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Abstract

In this thesis, we perform dynamical mean-field theory (DMFT) calculations for

perovskite manganites such as La1−xSr(Ca)xMnO3. These materials have been in-

tensively investigated due to an extraordinary property: colossal magnetoresistance

(CMR). The complicated phase diagrams of perovskite manganites reflect the in-

ternal complexity resulting from the interplay between charge, spin, orbital and

lattice degrees of freedom. In doped manganites, optical experiments show unusual

dynamic properties such as a pseudo-gap behavior. Whereas the low temperature

ferromagnetic metallic phase has been generally attributed to the ”double exchange”

mechanism, the high temperature paramagnetic insulating phase is not yet fully un-

derstood. Even in the parent compound LaMnO3, there has been a long debate

whether the Coulomb interaction or the Jahn-Teller coupling plays a more impor-

tant role.

Theoretically, DMFT provides arguably the most reliable tool to treat these local

correlations. The basic idea of DMFT is to map a lattice problem onto a self-

consistent impurity problem in the limit of infinite dimensions. In finite dimensions,

DMFT has been proved to be a good approximation as long as spatial fluctuations

are small. The impurity problem can be solved by using the quantum Monte Carlo

technique, as well as many other different approaches.

The thesis includes two main parts. First, in combination with band structure

calculations, we use DMFT to study the pressure-induced metal-insulator transition

in LaMnO3. This allows us to conclude the indispensable role of both the Coulomb

interaction and the Jahn-Teller coupling, in contrast to previous claims. A realistic

microscopic model is then proposed to incorporate both interactions and the Hund’s

rule coupling. For doped manganites, the model leads to the lattice polaron picture

and gives rise to the midgap states observed in experiments. The combination of

the polaron states and the midgap states explains the pseudo-gap behavior observed

in doped manganites. The numerical results are in good agreement with the optical

data. The metal-insulator transition and the CMR effect observed in doped man-

ganites are understood as a result of the magnetic ordering below Tc. The work,

however, still shows some quantitative discrepancies with experiments. These are

attributed to contributions such as the the O 2p and Mn 3d hybridization which are

not included in the low-energy effective model used for manganites.
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1 Introduction

Perovskite manganites have attracted intensive interest during the last decades due

to their extraordinary property of colossal magnetoresistance (CMR) [Millis 1998,

Dagotto et al. 2001, Salamon & Jaime 2001]. The general chemical formula of these

materials is T1−xDxMnO3, where T is a trivalent rare earth ion (T = La, Pr, Nd,

. . . ) and D is a divalent alkali ion (D = Ca, Sr, . . . ). Fig. 1.1 shows the typical

perovskite structure with six oxygen atoms sitting around each manganese atom

forming an octahedron. Theoretically, the system is often modelled by a cubic

lattice of the manganese 3d orbitals, since all other orbitals are far away from the

Fermi energy. The fivefold 3d orbitals are split by the crystal field into two higher

energy eg orbitals (d3z2−r2 and dx2−y2) and three lower energy t2g orbitals (dxy, dyz,

and dzx). The half-occupied t2g orbitals are localized and have a total spin |S| = 3/2

due to Hund’s rules. The two eg orbitals are partially occupied with 1− x electrons

per manganese ion.

The perovskite manganites have a very complicated phase diagram (see Fig. 1.2 for

O Mn

La,Sr,Ca,...

Figure 1.1: Sketch of the cubic perovskite unit cell for manganites. The position of the

La atoms can be shifted and the MnO6 octahedron can be deformed by the GdFeO3 and

Jahn-Teller distortions.
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1 Introduction

Fig. 2.1.1. (a) Temperature dependence of resistivity for various single crystals of La
���

Sr
�
MnO

�
. Arrows indicate the

Curie temperature. The open triangles indicate anomalies due to structural transitions. For more details see Urushibara

et al. (1995) from where this "gure is reproduced. (b) Phase diagram of La
���

Sr
�
MnO

�
(courtesy of Y. Tokura and Y.

Tomioka) prepared with data from Urushibara et al. (1995) and Fujishiro et al. (1998). The AFM phase at large x is an

A-type AF metal with uniform orbital order. PM, PI, FM, FI, and CI denote paramagnetic metal, paramagnetic

insulator, FM metal, FM insulator, and spin-canted insulator states, respectively. ¹
�
is the Curie temperature and ¹

�
is

the NeH el temperature. A more detailed version of this phase diagram is shown below in Fig. 4.4.1, with emphasis on the

small hole-density region which presents tendencies to charge-ordering and mixed-phase states.

1999a; Moreo et al., 2000). These insulating properties occur at low temperature by changing the
density, or, at "xed density, by increasing the temperature, at least in some density windows. It is at
the metal}insulator boundary where the tendencies to form coexisting clusters and percolative
transitions are the most important. This point of view is qualitatively di!erent from the approach
followed in previous theories based on polaronic formation, Anderson localization, or on

E. Dagotto et al. / Physics Reports 344 (2001) 1}15310

Figure 1.2: Phase diagram of La1−xSrxMnO3 as a function of temperature T and dop-

ing x. PI — paramagnetic insulator; PM — paramagnetic metal; CI — spin canted

insulator; FI — ferromagnetic insulator; FM — ferromagnetic metal; AFM — antiferro-

magnetic metal; TC — Curie temperature; TN — Néel temperature. Figure taken from

Ref. [Dagotto et al. 2001].

La1−xSrxMnO3). Jonker and van Santen first reported the existence of ferromag-

netism in mixed crystals of LaMnO3-CaMnO3, LaMnO3-SrMnO3, and LaMnO3-

BaMnO3 [Jonker & Santen 1950, Santen & Jonker 1950]. Antiferromagnetic and

ferromagnetic phases were later characterized for La1−xCaxMnO3, together with a

nontrivial arrangement of charge at particular hole densities in the antiferromagnetic

phase [Wollan & Koehler 1955].

The ”colossal” magnetoresistance (CMR) effect, which triggered the present inter-

est in manganites, can be described by the magnetoresistance ratios η = ∆R/R(H) =

(R(0) − R(H))/R(H) or η′ = ∆R/R(0) = (R(0) − R(H))/R(0), where R(0) and

R(H) are the resistance without and with a magnetic field H, respectively. The cor-

relation between magnetism and conductivity was known since the work of Jonker

and van Santen [Jonker & Santen 1950, Santen & Jonker 1950]. Its implication was,

however, only explored in 1993, when a large magnetoresistance (η ′ = 50%) was ob-

served in thin films under magnetic field [Chahara et al. 1993, von Helmolt et al. 1993].

In a La0.67Ca0.33MnOx film, η was found to be as large as 127, 000%, for which the

term colossal magnetoresistance was first coined [Jin et al. 1994]. A magnetoresis-
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tance ratio as high as η = 106% was also reported in thin films of Nd0.7Sr0.3MnOδ

[Xiong et al. 1995]. Unlike giant magnetoresistance found in the ferromagnetic/non-

magnetic multilayers, CMR is a bulk property which originates from the magnetic

ordering in the material.

Soon after CMR was discovered, various phase diagrams as a function of tempera-

ture and magnetic field or doping concentration were established [Tokura et al. 1994,

Urushibara et al.1995, Kuwahara et al.1995, Tomioka et al.1995a, Tomioka et al.1995b,

Tomioka et al. 1996, Tomioka et al. 1997, Moritomo et al. 1997, Mukhin et al. 1998].

Some of these phase diagrams can be found in the review articles [Tokura et al. 1996,

Tokura & Tomioka 1999, Salamon & Jaime 2001, Dagotto et al. 2001]. The pressure-

induced insulator-to-metal transition was also studied for the parent compound

LaMnO3 [Loa et al. 2001]. A charge/orbital-ordered phase has been observed in

a large number of perovskite (T1−xDxMnO3) and layered (T1−xD1+xMnO4) man-

ganites and its dependence on the effective bandwidth and the quenched disorder

has also been analyzed [Tomioka & Tokura 2004, Mathieu et al. 2006]. Moreover,

optical experiments show unusual dynamic properties in the paramagnetic insulating

phase of doped manganites. The latter reflect in a spectral function A(ω) with a very

low spectral weight at the Fermi level EF irrespectively of x, as indicated by photoe-

mission and X-ray absorption experiments [Bocquet et al. 1992, Chainani et al. 1993,

Saitoh et al. 1997, Park et al. 1996]. Similarly the optical conductivity σ(ω) shows

a very low spectral weight up to an energy scale of ∼ 1 eV [Okimoto et al. 1995,

Quijada et al. 1998, Jung et al. 1998, Takenaka et al. 1999]. Also the ferromag-

netic metallic phase is an atypical (bad) metal [Okimoto et al. 1995].

A physical understanding of these properties is difficult. The complicated phase

diagram reflects the internal complexity resulting from the interplay between charge,

spin, orbital and lattice degrees of freedom [Millis 1998, Tokura 2003]. The cur-

rent theoretical investigations focus on the orbital-ordered phase in the parent com-

pound LaMnO3 [Yin et al. 2006], the metal-insulator transition in doped mangan-

ites [Dagotto et al. 2001], as well as the charge/orbital-ordered phase in the half-

doped manganites [Popović & Satpathy 2002].

The earliest theory of ferromagnetism in doped manganites is the so-called ”double

exchange” (DE) mechanism [Zener 1951a, Zener 1951b]. Based on this mechanism,

also the antiferromagnetic phase at x=0 and the charge-ordered phase at x=0.5

found in manganites were predicted [Goodenough 1955]. A spin-canted state was

suggested later [de Gennes 1960]. This mechanism finally led to the well-known

Kondo lattice model [Kubo & Ohata 1972], in which the localized t2g electrons are

described as classical spins of length |S| = 3/2 and coupled to the itinerant eg
electrons according to Hund’s rules. The requirement to optimize the kinetic energy
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1 Introduction

of the itinerant electrons favors a spin polarized ground state.

The double exchange mechanism explains successfully the correlation between

magnetism and conductivity in doped manganites, but disagrees with experiments

in many aspects. The importance of the Jahn-Teller phonons was then proposed

[Millis et al. 1995] and their effect was studied intensively together with the Hund’s

coupling for eg electrons [Röder et al. 1996, Millis et al. 1996a, Millis et al. 1996b,

Millis et al. 1996c]. Although the new model fails to produce a large magnetoresis-

tance at finite doping, it can give rise to an insulating-like behavior for large electron-

phonon coupling when electrons are trapped as lattice polarons [Millis et al. 1996a].

To explain the CMR and the paramagnetic insulating-like phase, many other

mechanisms were then proposed, in particular, the localization of charge carriers

through orbital polarons [Kilian & Khaliullin 1998, Horsch et al. 1999], Anderson

localization arising from disordered t2g-spins [Varma 1996], and phase separation

into nano-domains showing percolation effects [Yunoki et al. 1998, Mayr et al. 2001].

Among them, the on-site Coulomb interaction, which is well-known to be responsible

for the Mott-Hubbard insulator at integer fillings, was also studied in an extended

Kondo lattice model [Held & Vollhardt 2000]. It is believed to enhance the electron

localization.

Despite all these efforts, hitherto no quantitative, microscopic calculation satisfac-

torily explains all the known experimental facts, especially the paramagnetic insulat-

ing phase which exists in a wide range of dopings x. Even in the parent compound

LaMnO3, it has been an issue of long debate whether the Jahn-Teller distortion

or the Coulomb repulsion is responsible for the insulating ground state at ambi-

ent conditions. Theories give rather different answers [Banach & Temmerman 2004,

Zenia et al. 2005, Yamasaki et al. 2006], while the high pressure experiment seems

to indicate the importance of the Coulomb interaction [Loa et al. 2001].

A huge numerical effort is also an obstacle towards a satisfactory understanding

of the physics of manganites. Both the (local) electron-electron and electron-phonon

interactions, as well as the Hund’s coupling between the itinerant eg electrons and

the localized t2g spins, have to be taken into account. In this respect, the dynamical

mean-field theory (DMFT) with the quantum Monte Carlo (QMC) solver provides

presently one of the most reliable tools to treat the local electronic correlations

[Georges et al. 1996]. Density functional theory within the local density approx-

imation (LDA) [Hohenberg & Kohn 1964, Kohn & Sham 1964, Kohn & Sham 1965,

Sham & Kohn 1966, Jones & Gunnarsson 1989] may also be important for realis-

tic investigations of the electronic structures of manganites [Anisimov et al. 1997,

Lichtenstein & Katsnelson1998, Katsnelson & Lichtenstein2000, Held2003, Held2005].

In this thesis, we first use the LDA+DMFT approach to investigate the pressure-
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induced insulator-to-metal transition in LaMnO3 and clarify the role of the Coulomb

repulsion and the Jahn-Teller coupling in manganites. A realistic microscopic model

is then proposed and studied for doped manganites by using the DMFT (QMC)

method. Our main conclusions are

• The Coulomb repulsion and the Jahn-Teller coupling are both indispensable

in understanding the electronic properties of LaMnO3. Neither of them alone

can make the system an insulator at ambient conditions. It is only with the

Coulomb repulsion that the splitting of the eg orbitals created by the Jahn-

Teller distortion is strongly enhanced, giving rise to the insulating behavior of

LaMnO3. Moreover, the pressure-induced insulator-to-metal transition is not

of Mott-Hubbard type, but results from the overlap of the split eg orbitals due

to the reduced crystal field splitting and the increased effective bandwidth at

high pressures. The lattice distortion is reduced but not completely suppressed

at the transition point, in contrast to previous claims.

• The high temperature paramagnetic insulating phase and the low temperature

ferromagnetic metallic phase in doped manganites can be obtained from a

realistic microscopic model including both the Coulomb repulsion and the

Jahn-Teller coupling, as well as the Hund’s coupling between the itinerant

eg electrons and the localized t2g spins. For large Jahn-Teller coupling, the

strongly correlated eg electrons are trapped as lattice polarons. The model

also gives rise to the midgap states observed in experiments. The combination

of the polaron states and the midgap states results in the pseudo-gap behavior

in doped manganites. The pseudo-gap is found to be enhanced by the strong

Coulomb repulsion.

Our work clarifies the role of the Coulomb interaction and the Jahn-Teller coupling

in both undoped and doped manganites. The two interactions are found to mu-

tually support each other. The direct comparison between numerical calculations

and experimental observations also shows some discrepancies which we attribute

to contributions not included in the low-energy effective model generally used for

manganites. Further investigations are still required for a better understanding of

manganites.

The thesis is organized as follows:

• In Chapter 2 several models are discussed concerning the effects of the double

exchange, the Jahn-Teller coupling and the Coulomb interaction in mangan-

ites. Their combination leads to the realistic microscopic model used in our

13



1 Introduction

work. We then explain how the values of some of the important parameters

can be estimated from experiments.

• In Chapter 3 we introduce the DMFT (QMC) technique and show by examples

how it can be implemented in practice for coupled boson-fermion systems. The

formula for the spin susceptibility and the optical conductivity will be derived

in the limit of infinite dimensions. We also explain briefly the idea of the LDA

and LDA+DMFT approaches.

• In Chapter 4 we describe in detail the high pressure experiment and present

our LDA+DMFT results for the pressure-induced insulator-to-metal transi-

tion in the parent compound LaMnO3. We show the origin of the insulating

ground state and the nature of the pressure-induced transition. DMFT calcu-

lations for the realistic microscopic model are also performed to investigate the

the electronic properties and the structural (orbital-ordered) transition from

dynamic to static Jahn-Teller distortion in LaMnO3. Parts of this chapter are

published in

A. Yamasaki, M. Feldbacher, Y.-F. Yang, O. K. Andersen, and K. Held,

Pressure-induced metal-insulator transition in LaMnO3 is not of Mott-Hubbard

type, Phys. Rev. Lett. 96, 166401 (2006).

• In Chapter 5 DMFT calculations for the realistic microscopic model are carried

out for doped manganites. After a detailed analysis of various optical exper-

iments, numerical results are presented and found to be in good agreement.

The basic physics behind manganites is discussed. We then introduce the

breathing phonon into the model and parameters such as the Coulomb inter-

action and the Jahn-Teller coupling are estimated by comparing our numerical

results with optical data in both undoped and doped manganites. Parts of this

chapter are contained in the preprint

Y.-F. Yang and K. Held, Localization of strongly correlated electrons as Jahn-

Teller polarons in manganites, cond-mat/0603553.

• We conclude in Chapter 6 with a summary and an outlook of problems for

further investigations.
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2 Model

In this chapter, we introduce several models to study the effects of the double ex-

change, the Jahn-Teller coupling and the local Coulomb interaction in manganites.

As we will see, the double exchange mechanism provides the basis for our under-

standing of ferromagnetism in doped manganites, while the Jahn-Teller coupling

leads to the electron localization which may explain the pseudo-gap behavior ob-

served in doped manganites. Also, the local Coulomb interaction plays an important

role in determining the nature of the insulating ground state and the pressure-

induced metal-insulator transition in LaMnO3. It is therefore necessary to combine

all of them together in order to achieve a better understanding of the physics of man-

ganites. A realistic microscopic model is then proposed and some of the parameters

are estimated from experiments.

2.1 Double exchange

In manganites, the Mn t2g spins are strongly coupled to the spin of the itinerant eg
electrons. According to the so-called ”double exchange” mechanism [Zener 1951a,

Zener 1951b], this coupling leads to an effective indirect ferromagnetic interaction

between adjacent t2g spins. This indirect ferromagnetic interaction competes with

the antiferromagnetic superexchange interaction between the t2g spins, giving rise to

the antiferromagnetic phase at x = 1 and the low temperature ferromagnetic phase

observed in doped manganites.

The double exchange mechanism can be explained by considering a system of two

Mn ions separated by an O2− ion. For a single eg electron, there exist two possible

charge states:

ψ1 : Mn3+O2−Mn4+,

ψ2 : Mn4+O2−Mn3+,

which are degenerate in energy. They are, however, not eigenstates of the system

since the eg electron can transfer from the Mn3+ ion to the adjacent Mn4+ ion

through the intermediate O2− ion, as is visualized in Fig. 2.1. This transfer pro-

cess is called a ”double exchange” [Zener 1951b]. The ”double exchange” process

introduces an effective hopping of the eg electrons between the nearest-neighbor Mn

15



2 Model

Fig. 3.1.1. (a) Sketch of the Double Exchange mechanismwhich involves twoMn ions and one O ion. (b) The mobility of

e
�
-electrons improves if the localized spins are polarized. (c) Spin-canted state which appears as the interpolation between

FM and AF states in some mean-"eld approximations. For more details see the text.

not included in the early considerations. The states of manganites were assumed to be uniform, and
`double exchangea (DE) was proposed by Zener (1951b) as a way to allow for charge to move in
manganites by the generation of a spin polarized state. The DE process has been historically
explained in two somewhat di!erent ways. Originally, Zener (1951b) considered the explicit
movement of electrons schematically written (Cieplak, 1978) as Mn��

�t
O
�t��s

Mn��P

Mn��O
�t��s

Mn��
�t

where 1, 2, and 3 label electrons that belong either to the oxygen
between manganese, or to the e

�
-level of the Mn-ions. In this process there are two simultaneous

motions (thus the name double exchange) involving electron 2 moving from the oxygen to the
right Mn-ion, and electron 1 from the left Mn-ion to the oxygen (see Fig. 3.1.1a). The second way
to visualize DE processes was presented in detail by Anderson and Hasegawa (1955) and it
involves a second-order process in which the two states described above go from one to the
other using an intermediate state Mn��

�t
O
�s
Mn��

�t
. In this context the e!ective hopping for the

electron to move from one Mn-site to the next is proportional to the square of the hopping
involving the p-oxygen and d-manganese orbitals (t


�
). In addition, if the localized spins are

considered classical and with an angle � between nearest-neighbor ones, the e!ective hopping
becomes proportional to cos(�/2), as shown by Anderson and Hasegawa (1955). If �"0 the
hopping is the largest, while if �"�, corresponding to an antiferromagnetic background, then the
hopping cancels. The quantum version of this process has been described by Kubo and Ohata
(1972).

27E. Dagotto et al. / Physics Reports 344 (2001) 1}153

Figure 2.1: Double exchange process with one electron hopping from the intermediate

O2− ion to the right Mn4+ ion and simultaneously one electron from the left Mn3+ ion to

the O2− ion. Figure taken from Ref. [Dagotto et al. 2001].

ions, so that the ground state is a combination of the two charge states and the

energy gain is approximately proportional to the effective hopping. Note that the

manganese t2g spins are usually treated as classical spins of length |S| = 3/2. This

allows us to introduce a tilting angle 0 ≤ θ ≤ π between adjacent spins. The effective

hopping of the eg conduction electrons is then renormalized by a factor of cos(θ/2)

[Anderson & Hasegawa 1955]. Obviously, the two t2g spins should point to the same

direction in order to have a largest effective hopping and the ground state is a spin

polarized state. The above arguments can be extended to a lattice model, where

the requirement to optimize the kinetic energy favors the ferromagnetic phase. In

doped manganites, this double exchange mechanism, together with the Hund’s rule

coupling, is generally believed to be responsible for the low temperature ferromag-

netic phase [Jonker & Santen 1950, Santen & Jonker 1950]. Moreover, spin-canted

states with 0 < θ < π were also predicted in some antiferromagnetic lattices based

on similar arguments [de Gennes 1960].

In reality, the O2− ions are often not considered and the system is modeled by

a cubic lattice of manganese ions with the nearest neighbor hopping t
〈ij〉
µν of the eg

electrons and the local Hund’s coupling between the eg and t2g spins. This is the

well-known Kondo lattice model [Kubo & Ohata 1972]:

HKLM = −
∑

<ij>;µνσ

t〈ij〉µν (c†iµσcjνσ + c†jνσciµσ)− 2J
∑

i;µ

siµ · Si, (2.1)

16



2.1 Double exchange

where {c†iµσ, ciµσ} are the fermionic creation and annihilation operators for electrons

at site i within eg-orbital µ with spin σ and siµ is the corresponding spin operator:

siµ =
∑

σ1σ2

c†iµσ1

τ σ1σ2

2
ciµσ2 . (2.2)

The Pauli matrices τ are defined as

τx =

(
0 1

1 0

)
, τ y =

(
0 −i
i 0

)
, τ z =

(
1 0

0 −1

)
.

In the Hamiltonian (2.1), we neglect the antiferromagnetic superexchange between

adjacent t2g spins which becomes important close to x = 1. The local t2g spins Si
are assumed to be classical. This assumption is reasonable since |Si| = 3/2 is large.

The Hund’s coupling J plays a crucial role for the ferromagnetism in doped man-

ganites. If J = 0, the spin susceptibility of the free eg electrons and the isolated t2g
spins can be calculated exactly and there is no magnetic transition.

If J is much smaller than the bandwidth W of the eg orbitals, it can be treated

as a perturbation and gives rise to the Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction between the t2g spins.

If J � W , the electrons are strongly correlated. The model can be solved by

the dynamical mean-field theory [Furukawa 1994, Millis et al. 1995, Furukawa 1998]

or the many-body coherent potential approximation (CPA) [Edwards et al. 1999,

Edwards 2002]. The two methods agree in the limit of |S| → ∞ and J → ∞
[Green & Edwards 1999].

As an example, Fig. 2.2 shows the Curie temperature Tc of the one-band Kondo

lattice model versus the average occupation number n = 1−x for various |S|, calcu-

lated with J =∞ using the elliptic bare density of states [Green & Edwards 1999].

The results were obtained by the many-body coherent potential approximation

[Green & Edwards 1999]. The behavior of the Curie temperature is nonmonotonic

with respect to the occupation number and has a maximum at intermediate n in

agreement with experiments (see Fig. 1.2). For band occupations n = 0 and n = 1,

the spin susceptibility exhibits the correct Curie law and ferromagnetism is com-

pletely suppressed since in both cases the number of the itinerant carriers (electron

at n = 0 and hole at n = 1) is zero. For the two-band Kondo lattice model (2.1),

the Curie temperature has a maximum at n = 1 (x = 0) [Held & Vollhardt 2000],

in contradiction with the experimental fact shown in Fig. 1.2.

For perovskite manganites with a hypothetic cubic structure, the bandwidth is

about 3.6 eV [Yamasaki et al. 2006] so that the Curie temperatures are much larger

than the experimental values. Moreover, the resistivity was also calculated and
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Figure 4. The Curie temperature kBTC/W calculated using the elliptic bare DOS plotted against
filling n for various S (top figure), and the effect on TC for S = 1/2 of changing the bare DOS to
the 3D cubic DOS (bottom figure).

saturated ferromagnetic ground state, using a method similar to that of Sakurai [19, 20] for
the Hubbard model. The Curie temperature obtained is similar in magnitude to TC in figure 4
and decreases with increasing S, as is the case here for n near 1. This work will be published
elsewhere.

Brunton and Edwards found that the stability of the spin-saturated state at T = 0 is strongly
dependent on the bare DOS used: approximating the true cubic tight-binding DOS with the
elliptic DOS qualitatively changed the form of their spin-flip excitation gap. Accordingly we
check the effect on TC of using the true tight-binding DOS. The bare elliptic and cubic tight-
binding DOSs and the corresponding full (zero-field paramagnetic state, S = 1, n = 1/2, and
J = ∞) CPA DOSs are shown for comparison in figure 5 below. Now it is straightforward to

Figure 2.2: The Curie temperature Tc/W of the one-band Kondo lattice model versus

the average occupation number n for various t2g spins, calculated with J = ∞ using the

elliptic bare density of states. Note in this figure W denotes the half bandwidth. The

results were obtained by the many-body coherent potential approximation. Figure taken

from Ref. [Green & Edwards 1999].

found to be much smaller than observed [Edwards 2002], indicating that more scat-

tering mechanisms are necessary and the spin disorder alone cannot account for the

various properties of doped manganites. In Ref. [Millis et al. 1995], the importance

of the Jahn-Teller effect in manganites was proposed to account for the experimental

results.

We should note that a Monte Carlo study of a one-band Kondo lattice model

led to a scenario of the phase separation between hole undoped antiferromagnetic

and hole-rich ferromagnetic regions at small dopings [Yunoki et al. 1998]. The Curie

temperature was obtained with a magnitude in agreement with experimental val-

ues. Based on this electronic phase separation scenario, a percolative mechanism

was proposed to describe the resistivity of manganites [Mayr et al. 2001], which seems

to explain the metal-insulator transition and the CMR effect in doped manganites.

However, it is clear that the double exchange mechanism alone cannot explain (even

qualitatively) many other experimental facts such as the pressure-induced insulator-

to-metal transition in LaMnO3 (see chapter 4) and the unusual optical spectra ob-

served in doped manganites (see chapter 5). All these indicate the importance of

the Jahn-Teller coupling to the eg electrons.
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2.2 Jahn-Teller coupling

2.2 Jahn-Teller coupling

In perovskite manganites, the vibration of the La ions against the MnO6 octahedra

and that of the oxygen ions give rise to the static and dynamic distortion of the

lattice. These vibrational modes couple to the Mn eg electrons and have strong

effects on the electronic properties of the materials. Fig. 2.3 sketches some of these

109, 170, 308, 481, and 611 cm 21, and of B1g or B3g sym-
metry at 184 and 320 cm 21. The experimentally determined
Raman phonon wave numbers for LaMnO3 are also included
in Table II.

Further, the assignment of Raman lines of YMnO3 and
LaMnO3 to particular atomic motions will be discussed on
the basis of Raman line symmetries, some general consider-
ations concerning the expected shapes for the Raman modes,
and by comparison to Raman spectra of other RZO 3 com-
pounds with Pnma structure, such as YAlO3,6 RFeO 3
(R5Tb,Dy,Ho,Tm!,8 ErFeO3,7 YCrO3,6 and GdCrO3.6 A
comparison to the LDC results for YMnO3 and LaMnO3 will
also be made.

The corner-shared ZO 6 octahedra are building units of the
RZO 3 compounds with Pnma structure as the Z-O1 and
Z-O2 bonds are shorter than the R-O1 and R-O2 ones. The Z
atoms ~Mn, Al, Fe, or Cr! are in centers of symmetry and do
not participate in Raman active modes. Therefore, it is plau-
sible to expect that at least part of the Raman modes will
include oxygen motions similar to the characteristic ones for
an isolated ZO 6 unit.

Considering the atomic motions constituting the phonon
modes of Pnma structure, the following has to be taken into
account.

~i! The motions of R and O1 atoms are restricted by the
site symmetry (Cs

xz) within the xz plane for the Ag and B2g
modes, and along the y axis for the B1g and B3g modes. As

FIG. 5. Raman allowed phonon modes for the RZO 3 com-
pounds with Pnma structure.

FIG. 3. Raman spectra of orthorhombic LaMnO3 (Pnma) as
measured with increasing incident laser power. The Raman intensi-
ties are normalized to the laser power. The Raman spectrum of
rhombohedral LaMnO3 ~space group R 3̄ c) is also shown. The left
half of the spectra are multiplied by the factor indicated there.

FIG. 4. Raman spectra of orthorhombic LaMnO3 ~space group
Pnma) in various scattering configurations. At the top the zz spec-
trum of YMnO3 is also given for comparison. The left half of the
spectra are multiplied by the factor indicated there.

2876 57M. N. ILIEV et al.

Figure 2.3: Raman-active phonon modes for orthorhombic LaMnO3 grouped by their

symmetries Ag, B1g, B2g and B3g. Figure taken from Ref. [Iliev et al. 1998]

19



2 Model

X1X2
Y2

Y1

Z1

Z2
Q 1 Q 3

O

Mn

Q 2

Mn

O O

Mn

Breathing Mode Jahn−Teller Mode

Figure 2.4: Vibration of the oxygen octahedra around manganese ion for the breathing

mode Q1 and the two Jahn-Teller modes Q2 and Q3.

modes grouped according to their symmetry (Ag, B1g, B2g, B3g). Among the 24

Raman-active modes discussed in Ref. [Iliev et al. 1998] there are 16 modes (4 for

each symmetry type) not involving vibration of the La ions. These modes correspond

to the stretching, bending and rotation of the O-Mn-O bonds in the MnO6 octahedra.

Due to the cooperative effect, the oxygen atoms of the neighboring octahedra may

vibrate in-phase or out-of-phase.

In perovskite manganites, the most important lattice effect is the Jahn-Teller

distortion of the MnO6 octahedra characterized by

Q2 =
1√
2

(X1 −X2 − Y1 + Y2),

Q3 =
1√
6

(2Z1 − 2Z2 −X1 + X2 − Y1 + Y2), (2.3)

where Xi, Yi, and Zi are the displacements of the oxygen ions at the positive (i = 1)

and negative (i = 2) axes from the equilibrium positions along the x-, y-, and

z-directions, respectively (see Fig. 2.4).

As stated by the Jahn-Teller theorem [Jahn & Teller 1937], the cubic structure

with degenerate eg orbitals is unstable. The lattice (or the MnO6 octahedra) will be

distorted and the double degeneracy of the eg orbitals will be lifted by the distortion.

According to Kanamori [Kanamori 1960], this interaction between eg electrons and

the Jahn-Teller modes can be put in the form

Hep = −g
∑

i;µνσ

c†iµσ(Q2iτ
x +Q3iτ

z)µνciνσ. (2.4)
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2.2 Jahn-Teller coupling

The total Hamiltonian is then

H = HKLM +Hep +

3∑

i;a=2

Ω2

2
Q2
ai. (2.5)

Here g is the Jahn-Teller coupling, Ω is the frequency of the Jahn-Teller phonons,

and Qai is the bosonic operator for the a-th Jahn-Teller mode at site i. In most

publications, the phonons are assumed to be classical and local, and the cooperative

effect of the neighboring MnO6 octahedra is neglected.

One may also include in the Hamiltonian (2.5) the breathing mode

Q1 =
1√
3

(X1 −X2 + Y1 − Y2 + Z1 − Z2), (2.6)

which couples to the electron density in the form

−g
∑

i;µσ

Q1ic
†
iµσciµσ. (2.7)

In manganites, the breathing mode has a slightly larger frequency than the Jahn-

Teller modes and is therefore often neglected. But it may well be important. We

will discuss this issue later in section 5.3.

To understand the effect of the Jahn-Teller coupling, we first consider a single-site

model for the two eg orbitals. The Hamiltonian reads

H = −g
∑

µν

c†µ(Q2τ
x +Q3τ

z)µνcν+
1

2

3∑

a=2

Ω2Q2
a. (2.8)

The electrons are assumed to be spinless here since the Hund’s coupling is large.

For single occupancy, the ground state can be expressed as

|Ψ〉 =

(
cos(

φ′

2
)c†1 + sin(

φ′

2
)c†2

)
|0〉. (2.9)

Introducing new variables Q (≥ 0) and φ (−π ≤ φ < π) so that

Q2 = Q sin(φ), Q3 = Q cos(φ), (2.10)

we obtain the ground state energy

EGS = El + Eg, (2.11)

where

El =
1

2
Ω2Q2 (2.12)
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is the lattice distortion energy and

Eg = 〈Ψ|Hg|Ψ〉 = −gQ cos(φ− φ′) (2.13)

is the electron-phonon interaction energy. Here Hg denotes the interaction part of

the Hamiltonian (2.8).

Applying the variational conditions

∂E

∂Q
=
∂E

∂φ
=
∂E

∂φ′
= 0, (2.14)

we find

φ = φ′, Q =
g

Ω2
. (2.15)

The ground state is then

cos(φ/2)|3z2 − r2〉+ sin(φ/2)|x2 − y2〉, (2.16)

if the original orbitals in Eq. (2.8) are |3z2−r2〉 and |x2−y2〉. This gives the ground

state energy

EGS = − g2

2Ω2
, (2.17)

which includes the lattice distortion energy El = −EGS and the electron-phonon

interaction energy Eg = 2EGS. The energy g2/2Ω2 is also called the static Jahn-

Teller energy (EJT ). The excited state is orthogonal to the ground state and can be

simply written as

− sin(φ/2)|3z2 − r2〉+ cos(φ/2)|x2 − y2〉, (2.18)

with a much higher energy Eex = 3EJT . The two eg orbitals are split by the Jahn-

Teller coupling.

Since the ground state energy is independent of φ, the lattice distortion in the

single-site model can have different orientations in the (Q2, Q3) plane. In real mate-

rials, the ”orbital mixing angle” φ will be fixed by other contributions such as the an-

harmonic terms of the potential energy and higher order couplings [Kanamori 1960,

Popovic & Satpathy 2000]. More details will be discussed in section 4.3.1.

Similar physics occurs in the lattice model (2.5). In the undoped system, the split-

ting of the eg orbitals can lead to an insulating ground state if the Jahn-Teller cou-

pling is strong enough. In doped systems, the conduction electrons can be trapped

by large lattice distortions and form small lattice polarons, which may be responsi-

ble for the high temperature insulating behavior in doped manganites. The theory

of small polarons was first developed in [Holstein 1959a, Holstein 1959b] and later

22



2.2 Jahn-Teller coupling

By use of the relation between the expectation value and
the electron Green function, of Eq. ~6! with momentum in-
dependent self-energy, and of the arguments leading from
Eq. ~7! to Eq. ~10! and the mean-field equations, we obtain

K52T(
n

@G loc
↑↑~vn!#

2
1(

n
@G loc

↓↓~vn!#
2. ~23!

The magnetization m is given by

m5E
0

`

x dxE
21

1
dcosucosuP~x ,u !. ~24!

In these units the T50 value of m51.
We shall also be interested in the mean square lattice

distortion x̄2, given by

x̄ 2
5E

0

`

x dxE
21

1
d~cosu !x2P~x ,u !. ~25!

We conclude this section by mentioning numerical meth-
ods. We use the procedures described in I, and handle the
additional angular integral by a twenty-point Legendre for-
mula. Computations are of course more time consuming be-
cause of the extra integral involved. We found it convenient
first to locate the magnetic transition temperature Tc and then
to perform calculations at T.Tc using equations obtained by
forcing b150. Convergence difficulties arise for tempera-
tures near Tc ; these are presumably related to critical slow-
ing down near the magnetic phase transition. We found that
an accurate value for Tc was most conveniently obtained by
computing several values of m in the range 0.15&m&0.3
(0.02&m2

&0.1) and finding Tc by fitting to
m2(T)5a(Tc2T) with a and Tc fit parameters.

In previous work16,24 we had also used an alternative
method ~which we termed the projection method! based on
the observation that by choice of an appropriate local spin
reference frame one may map the model into one of spinless
fermions moving in a lattice with a spatially varying hopping
determined by the local spin orientations. We further argued
that within mean-field theory one could approximate this
hopping by t(m)5A(11m2)/2, thereby simplifying the
problem to one of spinless fermions, with hopping t(m)
coupled to phonons. Finally we argued that one could con-
struct a mean-field magnetic free energy by combining the
m dependence of the free energy of the auxiliary problem
with the entropic term from the conventional mean-field
theory for Heisenberg spins. This procedure leads to a
Tc(l)/Tc(0) almost identical to that shown in Fig. 2; how-
ever, the projection method Tc is lower than those shown in
Fig. 2. For example, the projection method Tc at
l50, m50 is 0.1t , much less than the 0.17t shown in Fig.
2. A numerical error originally led us to believe the Tc’s of
the two approaches coincided. The discrepancy may most
easily be understood by expanding F52T ln@Zloc# to order
a1n

2 The result is a quadratic form dF;(mna1nLnma1m . For
example, at g50, Lmn5dmn@121/3(a0n)

2#12/3a0na0m .
Tc is the temperature at which L first has a zero eigenvalue.
The projection method result corresponds to setting
Lmn5dmn@121/3(a0n)

2# and a1n5const; in other words it
produces a lower Tc because it does not permit an optimal

choice of a1n . We have therefore not used the projection
method in this paper. We note, however, that the projection
method provides a transparent and physically appealing mo-
tivation for the result, found also in the detailed calculations
presented below, that the Tc is controlled by the kinetic en-
ergy at Tc .

III. QUALITATIVE BEHAVIOR

In this section we discuss the qualitative behavior of the
solutions of Eqs. ~16!. Much of the behavior is similar to that
found in I. The new feature is the physics of double ex-
change, which is expressed via b1, via the angular integral
and via the factors of 1/2 on the right-hand side of Eqs. ~16!.

At T→0, the u integral is dominated by the regime
cosu51, so b15b02(v1m). From Eq. ~19! one sees that at
T50 the antialigned component of G vanishes, while the
aligned component is determined by (b01b1) which is given
by an equation identical to that considered in I. Therefore, all
of the results obtained in I for the T→0 limit hold also here.
At T.Tc , there is no long-range magnetic order. Thus
b150, there is no u dependence and b0 is given by an equa-
tion that differs by a factor of 1/2 from that treated in I.

Further insight into the quantity b1 may be gained from
the l50 limit. At T50 and l50 the quantity b01b1 is
found from Eqs. ~14! to be

b01b15

1
2

@v1m2iA42~v1m !2# . ~26!

This is precisely the usual noninteracting solution: ImG loc
Þ0 in a semicircular band of full width 4t . In the present
conventions, the Fermi level is at v50 and for l50 the
maximum of the spectral function is at v52m . The self-
energy for this solution vanishes.

At T.Tc and l50, b150, and

b05

1
2

@v1m2iA22~v1m !2# . ~27!

FIG. 2. Dependence of ferromagnetic Tc on coupling constant
for n51 ~heavy solid line!, n50.75 ~light solid line!, and n50.5
~light dashed line!. The analytic zero coupling results are indicated
by dots; the analytic strong coupling Tc5n/12l2 results by the
heavy dotted line for n51. Only for n51 do the numerical calcu-
lations extend into the strong coupling regime.
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Figure 2.5: Curie temperature Tc (in units of W/4) as a function of the electron-phonon

coupling λ ≡ g2/Ω2t for different occupation numbers n=1 (heavy solid line), 0.75 (light

solid line), and 0.5 (light dashed line). The results were obtained for a two-band Kondo

lattice model with Jahn-Teller phonons. Figure taken from Ref. [Millis et al. 1996c].

studied in [Sumi 1972, Sumi 1974, Ciuchi et al. 1997]. In doped manganites, the

importance of the Jahn-Teller phonons was first realized in [Millis et al. 1995] and

then intensively studied in the past decades [Röder et al. 1996, Millis et al. 1996a,

Millis et al. 1996b, Millis et al. 1996c, Zang et al. 1996, Majumdar et al. 1999,

Hotta et al. 2001, Ohsawa & Inoue 2002, Aliaga et al. 2003].

The polaron effect may account for some of the discrepancies between the ex-

perimental facts and the theoretical results of the Kondo lattice model. As an

example, Fig. 2.5 shows the Curie temperature as a function of the Jahn-Teller

coupling obtained for a two-band Kondo lattice model with Jahn-Teller phonons

[Millis et al. 1996c]. We see that the Curie temperature is suppressed at larger cou-

pling since the electrons are more localized by the Jahn-Teller distortion. The in-

clusion of the Jahn-Teller coupling thus yields a better agreement with experiments.

However, the finite Curie temperature at n = 1 contradicts with the antiferromag-

netic spin ordering (TN = 140 K) found in LaMnO3 (see Fig. 1.2). This contradiction

can only be resolved if the Coulomb interaction is taken into account.
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2.3 Coulomb interaction

In the Kondo lattice model (2.1) the local Coulomb interaction has been neglected.

For Mn ions, this is only valid when the average occupation number per site is much

smaller than one so that electrons have little chance of double occupancy. If the

Coulomb interaction is included, we get an extended Kondo lattice model (on the

cubic lattice)

H = HKLM + U
∑

i;µ

∑

i

niµ↑niµ↓ +
∑

i;σσ̃

(V − δσσ̃F )ni1σni2σ̃, (2.19)

where U and V are the intra- and inter-orbital Coulomb interactions, respectively. F

is the eg-eg exchange interaction. Due to the cubic symmetry, we have V = U − 2F .

The spin flip terms are usually neglected since they create the so-called sign problem

in QMC simulations.

Without Hund’s coupling J , Hamiltonian (2.19) is the Hubbard model for eg elec-

trons. In general, the Hubbard model has been intensively studied within DMFT,

mainly with respect to the Mott physics [Imada et al. 1998]. Let us take the one-

band Hubbard model as an example. Fig. 2.6 sketches the typical phase diagram

of the (one-band) Hubbard model. The system is always metallic away from half

Filling n

U/W

X

In
su

la
to

r

BC−MIT
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−M

ITFC
−M

IT

MetalMetal

Figure 2.6: Typical phase diagram of the Hubbard model (see also [Imada et al. 1998]).

Two routes for the metal-insulator transition are shown: BC-MIT (bandwidth-control

metal-insulator transition) and FC-MIT (filling-control metal-insulator transition).
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2.4 Realistic microscopic model

filling. At half filling (n = 1), it becomes a Mott insulator if the ratio U/W is larger

than a critical value.

In the insulating phase (n = 1), the strong on-site Coulomb interaction leads to

antiferromagnetic spin ordering at low temperature. This can be easily seen for

U → ∞ when the perturbation in terms of t/U yields the so-called t − J model

with the antiferromagnetic superexchange interaction J ∝ t2/U [Imada et al. 1998].

In the metallic phase, the effective bandwidth W ? of the quasiparticles is strongly

renormalized by the Coulomb interaction so that W ? is much smaller than the

bandwidth W of the free electrons.

The bandwidth-control metal-insulator transition can be achieved by applying

an external pressure which changes the bandwidth of the conduction electrons.

The pressure-induced (bandwidth-control) metal-insulator transition is observed

typically for V2O3 [Bao et al. 1993, Carter et al. 1993] and RNiO3 (R=Pr and Nd)

[Obradors et al. 1993]. For perovskite compounds (ABO3), W can also be controlled

by modification of the ionic radius of the A site. This ionic radius affects the angle

of the A-O-A bonds and therefore the effective bandwidth W . In chapter 4, we will

discuss the pressure-induced metal-insulator transition in LaMnO3 [Loa et al. 2001].

Some of these effects of the Coulomb interaction are expected to hold also for the

extended two-band Kondo lattice model (2.19). For doped systems, the reduction of

the quasiparticle bandwidth is expected to enhance the localization of the conduction

electrons by lattice distortion and spin disorder which are now governed by the

ratios EJT/W
? and J/W ?, respectively. The extended model has been studied

by DMFT [Held & Vollhardt 2000]. Fig. 2.7 shows the Curie temperature as a

function of doping x = 1− n. Different from that for the original two-band Kondo

lattice model (2.1), the extended model yields a maximal Tc at around x = 0.5

(n = 0.5). Close to n = 0 (x = 1), the Coulomb interaction is not effective and

Tc remains almost unmodified. Close to n = 1 (x = 0), the Coulomb repulsion

prevents double occupancy so that electrons are almost localized and Tc is therefore

strongly suppressed. The Coulomb interaction is thus necessary to explain the

doping dependence of the Curie temperature in doped manganites. Moreover, the

extended model also leads to an antiferromagnetic spin ordering at n = 1 (x = 0),

in agreement with the experimental fact in LaMnO3.

2.4 Realistic microscopic model

To summarize our discussions, the double exchange mechanism (or the Hund’s cou-

pling to the itinerant eg electrons) plays a crucial role for the ferromagnetism in

doped manganites [Zener 1951b], but are unable to explain all the complicated fea-
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as derived for the hypercubic lattice by Pruschke et al.
[25]. Here ImG´́́ is the imaginary part of

G´́́�v� �

1

v 1 id 1 m 2 S�v� 2 ´
. (6)

The result is shown in Fig. 2. Already for U � V0 �

F0 � 0 (ferromagnetic KLM) the optical conductivity de-
viates considerably from the results for the noninteracting
system (J � 0). This is due to the scattering of the eg elec-
trons at the disordered t2g spins which leads to a non-Fermi
liquid paramagnetic phase with a finite imaginary part of
the self-energy at the Fermi energy. Electronic correlations
induced by the local Coulomb repulsion further reduce the
optical conductivity at small frequencies. A second peak
(absent for J � 0), which results from contributions to the
particle-hole diagram with particles in the upper band and
holes in the lower band of the spectrum, is smeared out by
the electronic correlations.

Finally, we investigate the instability of the paramag-
netic phase against long-range ferromagnetic order. To
this end, we calculate the magnetic susceptibility x�T �
which diverges at the Curie temperature Tc as x�T � �

a�T 2 Tc�21 within DMFT. Figure 3 shows the results
as a function of doping x together with two analytically
tractable limits of DMFT: (i) double exchange (dashed
line) as described by the ferromagnetic KLM and (ii) su-
perexchange (cross) at x � 0 and strong coupling. The
KLM [case (i)] neglects electronic correlations and, at
J ¿ t, leads to double exchange with an energy gain
proportional to the kinetic energy gain of the eg elec-
trons in a ferromagnetic environment, i.e., Tc ~ t. At
x � 1 the eg bands are empty and no kinetic energy is
gained, i.e., Tc � 0. On the other hand, at x � 0, the
two spin-polarized eg bands are half filled, such that the
kinetic energy gain, and hence Tc, is maximal. In case
(ii), DMFT corresponds to Weiss mean-field theory for

FIG. 2. Optical conductivity s�v� at x � 0.3, W � 2, U �

8, F0 � 1, V0 � 6, and J � 3�2. Dotted line: T � 0.2; short-
dashed line: T � 0.125; solid line: KLM (U � F0 � V0 � 0);
long-dashed line: noninteracting system (J � U � F0 � V0 �

0; line broadening d � 0.01). The optical conductivity of the
interacting system is seen to differ considerably from that of a
Fermi liquid.

the effective Kugel’-Khomskiı̆-type Hamiltonian which,
at x � 0, predicts an instability against orbital ordering
and an additional instability against ferromagnetic order
at Tc � Zt2��V0 2 F0� 2 Zt2��V0 1 2J� (Z: number of
nearest neighbors). Since t ø U, V0 the critical tempera-
ture of the superexchange mechanism (Tc ~ t2�V0) is an
order of magnitude smaller than that of double exchange
(Tc ~ t).

Solving the correlated electron model (2) for arbitrary
x numerically within DMFT, a crossover from double ex-
change to superexchange is clearly observed. At x * 0.5,
the critical temperature is relatively well described by
the ferromagnetic KLM, i.e., by double exchange. Here,
double occupations are rare since there are only a few eg

electrons. With decreasing x (increasing the number of eg

electrons) the local Coulomb repulsion strongly reduces
double occupancies and thus becomes more and more im-
portant. The kinetic energy gain, and thereby double ex-
change, is reduced and superexchange becomes effective
instead. This crossover from double exchange to superex-
change yields a maximum in Tc in qualitative agreement
with experiment. Note that without the coupling to the
t2g spin, i.e., in a two-band Hubbard model, no ferromag-
netism was observed for 0 # n , 1 at values of F0 typical
for manganites [26].

In conclusion, our results show that electronic correla-
tions are certainly important for understanding CMR man-
ganites and cannot be neglected. In the paramagnetic
phase, electronic correlations lead to the formation of an
upper Hubbard band and to a shift of spectral weight into
this band if the system is doped. This shift of spectral
weight from a lower to an upper band is a genuine correla-
tion effect and may explain a similar experimental observa-
tion [19]. Another aspect of electronic correlations is the
broadening of the spectrum due to the imaginary part of

FIG. 3. Curie temperature Tc for the phase transition from the
paramagnetic (PM) to the ferromagnetic (FM) phase as a func-
tion of doping x. Dashed line: KLM with W � 2 and J � 3�2;
squares: correlated electron model (2) which also takes into
account the Coulomb interaction between eg electrons (U � 8,
V0 � 6, and F0 � 1); cross: Weiss mean-field theory for (2).
The correlated electron model is seen to describe a crossover
from double exchange at 0.5 & x # 1 to superexchange
at x ! 0.
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Figure 2.7: Curie temperature TC as a function of doping x for the model Hamiltonian

(2.19) obtained by DMFT. The Coulomb interactions are U = 8 eV, V = 6 eV and F =

1 eV. TC for pure double exchange model is also shown (dashed line) for comparison.

Figure taken from Ref. [Held & Vollhardt 2000].

tures observed in experiments. The importance of the Jahn-Teller coupling was then

proposed and shown to be responsible for the high temperature insulating behavior

[Millis et al. 1995]. In addition, the Coulomb interaction might also be necessary

for describing LaMnO3 and important in doped manganites. These considerations

lead to a realistic microscopic model

H = −
∑

〈〈ij〉〉;µνσ
tijµνc

†
iµσcjνσ − 2J

∑

i;µ

siµ · Si

+ U
∑

i;µ

niµ↑niµ↓ +
∑

i;σσ̃

(V − δσσ̃F )ni1σni2σ̃

− g
∑

i;µνσ

c†iµσ(Q2iτ
x +Q3iτ

z)µνciνσ +
∑

i;a

(
P 2
ai

2
+

Ω2

2
Q2
ai

)
. (2.20)

Here, c†iµσ and ciµσ are creation and annihilation operators for electrons on site i

within eg orbital µ and spin σ; siµ denotes the eg-spin (defined as Eq. (2.2)), Si is

the t2g-spin, and Qai (Pai) the coordinate (momentum) of the two quantum Jahn-

Teller modes.

Similar models have been proposed before but only studied in some limiting cases

[Rozenberg 1998, Motome & Imada 1999a, Motome & Imada 1999b, Ferrari et al. 2001].
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2.4 Realistic microscopic model

The strong on-site Coulomb interaction and the local Jahn-Teller phonons can

be treated numerically by DMFT but the computations are very time-consuming

[Blankenbecler et al. 1981, Georges et al. 1996]. Moreover, the values of the pa-

rameters such as the Coulomb interaction U and the Jahn-Teller coupling g are not

yet fixed. Different estimates can be found in the literature [Bocquet et al. 1992,

Satpathy et al. 1996a, Satpathy et al. 1996b, Millis et al. 1996c, Zampieri et al. 1998,

Perebeinos & Allen 2000, Popovic & Satpathy 2000].

Nevertheless, to have an idea about their magnitudes before the numerical in-

vestigations, we show in this section how the values of some of the most relevant

parameters can be estimated from experiments. First, we will write down a realistic

tight-binding model for free eg electrons on the cubic lattice [Slater & Koster 1954].

The phonon frequency will be directly obtained from the Raman spectroscopy data

[Iliev et al. 1998] and the Coulomb interaction U will be estimated from the pho-

toemission and x-ray absorption spectroscopy [Park et al. 1996]. In section 5.3, these

results will be compared to an independent estimate based on DMFT calculations

and optical data in both undoped and doped manganites.

Hopping integral The tight-binding Hamiltonian for the free eg electrons on the

cubic lattice of manganese ions can be expressed as

H0 = −
∑

iaµνσ

taµνc
†
i,µσci+a,νσ, (2.21)

where a denotes the vector connecting nearest-neighbor sites and taµν is the hopping

integral between their µ- and ν-orbital along the a-direction.

Based on the double exchange mechanism, taµν is a combination of the hopping

integral from Mn ion to oxygen ion and vice versa,

− txµν = Ex,µ(1, 0, 0)× Ex,ν(−1, 0, 0),

−tyµν = Ey,µ(0, 1, 0)× Ey,ν(0,−1, 0),

−tzµν = Ez,µ(0, 0, 1)× Ez,ν(0, 0,−1), (2.22)

where Ea,µ(l, m, n) is the overlap integral between manganese µ- and oxygen pa-

orbital along (l, m, n) direction. Following Slater and Koster [Slater & Koster 1954],

Ea,µ(l, m, n) are listed in Fig. 2.8. We obtain

tx = t0

(
3
4
−
√

3
4

−
√

3
4

1
4

)
, tx = t0

(
3
4

√
3

4√
3

4
1
4

)
, tz = t0

(
0 0

0 1

)
, (2.23)

where t0 is a constant. Eq. (2.23) is written with respect to d3z2−r2 and dx2−y2

orbitals and provides a realistic tight-binding model for manganites. The Fourier
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Figure 2.8: Overlap integral Eµν(l,m, n) between µ- and ν-orbitals of two ions along

(l,m, n) direction. Figure taken from Ref. [Slater & Koster 1954].

transform

ckµσ =
1

N

N∑

i=1

eiri·kciµσ (2.24)

yields the dispersion

εµνk = −2
∑

a=x,y,z

taµν cos(ka), (2.25)

with a bandwidth W = 6t0. A recent LDA calculation gives W ≈ 3.6 eV for

cubic LaMnO3 and W ≈ 3.0 eV for orthorhombic LaMnO3 at ambient pressure

[Yamasaki et al. 2006]. Other different estimates can be found in the review article

[Dagotto et al. 2001].

Phonon frequency Following Ref. [Iliev et al. 1998], Fig. 2.9 shows the Raman

spectra of orthorhombic LaMnO3. The peaks correspond to the Raman-active modes
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2.4 Realistic microscopic model

109, 170, 308, 481, and 611 cm 21, and of B1g or B3g sym-
metry at 184 and 320 cm 21. The experimentally determined
Raman phonon wave numbers for LaMnO3 are also included
in Table II.

Further, the assignment of Raman lines of YMnO3 and
LaMnO3 to particular atomic motions will be discussed on
the basis of Raman line symmetries, some general consider-
ations concerning the expected shapes for the Raman modes,
and by comparison to Raman spectra of other RZO 3 com-
pounds with Pnma structure, such as YAlO3,6 RFeO 3
(R5Tb,Dy,Ho,Tm!,8 ErFeO3,7 YCrO3,6 and GdCrO3.6 A
comparison to the LDC results for YMnO3 and LaMnO3 will
also be made.

The corner-shared ZO 6 octahedra are building units of the
RZO 3 compounds with Pnma structure as the Z-O1 and
Z-O2 bonds are shorter than the R-O1 and R-O2 ones. The Z
atoms ~Mn, Al, Fe, or Cr! are in centers of symmetry and do
not participate in Raman active modes. Therefore, it is plau-
sible to expect that at least part of the Raman modes will
include oxygen motions similar to the characteristic ones for
an isolated ZO 6 unit.

Considering the atomic motions constituting the phonon
modes of Pnma structure, the following has to be taken into
account.

~i! The motions of R and O1 atoms are restricted by the
site symmetry (Cs

xz) within the xz plane for the Ag and B2g
modes, and along the y axis for the B1g and B3g modes. As

FIG. 5. Raman allowed phonon modes for the RZO 3 com-
pounds with Pnma structure.

FIG. 3. Raman spectra of orthorhombic LaMnO3 (Pnma) as
measured with increasing incident laser power. The Raman intensi-
ties are normalized to the laser power. The Raman spectrum of
rhombohedral LaMnO3 ~space group R 3̄ c) is also shown. The left
half of the spectra are multiplied by the factor indicated there.

FIG. 4. Raman spectra of orthorhombic LaMnO3 ~space group
Pnma) in various scattering configurations. At the top the zz spec-
trum of YMnO3 is also given for comparison. The left half of the
spectra are multiplied by the factor indicated there.
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Figure 2.9: Polarized Raman spectra of orthorhombic LaMnO3 in various scattering

configuration xx, yy and so on. The zz spectrum of YMnO3 is also shown for comparison.

The left half of the spectra are multiplied by the factor indicated there. Figure taken from

Ref. [Iliev et al. 1998]

sketched in Fig. 2.3. They can be identified by comparing to the lattice dynamical

calculations shown in Fig. 2.10. We see that the experimental and numerical results

are consistent. Comparing Fig. 2.3 and Fig. 2.4, we estimate that the frequency

of the Jahn-Teller modes is 500 − 600 cm−1 or approximately ΩJT = 0.07 eV, and

the frequency of the breathing mode (Q1) is 600−700 cm−1 or approximately Ωbr =
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experimental data for orthorhombic YMnO3 are summarized
in Table II.

Unlike the case of YMnO3, the Raman spectra of
LaMnO3 exhibit an unusually strong dependence on the ex-
citing laser power even at low laser power densities. Indeed,
with laser power of 2 mW ~used to obtain the spectra of
YMnO3 of Fig. 2! the Raman spectra of LaMnO3 consist of
broad relatively weak lines superimposed on a stronger
structureless background. Figure 3 illustrates the variations
of Raman spectra of LaMnO3 with incident laser power be-
tween 0.12 and 4.55 mW ~the averaged laser power density
varies between ;23107 W/m 2 and ;13109 W/m 2). At
low laser power density the background is strongly reduced
and the Raman lines are relatively narrow, but still much
broader than the corresponding lines in the spectra of
YMnO3 ~see also Fig. 4!. Except for a broadening, the in-
crease of laser power results in a considerable shift of some
of the spectral features. In particular, the structure with a
maximum near 275 cm 21 shifts towards lower wave num-
bers and transforms into a broad peak centered near 220
cm 21.

To explain qualitatively the observed dependence on the
laser irradiation let us remember that the structure of
LaMnO3 depends on the method of preparation and is sensi-

tive to the actual oxygen content, to the oxygen partial pres-
sure, and to the temperature. Laser annealing increases the
temperature thus resulting in increasing disorder and stimu-
lating ~at higher temperatures! in- and out-diffusion of oxy-
gen. During irradiation of oxygen-deficient samples in air the
in-diffusion of oxygen will prevail. As a result, a structural
transformation toward the rhombohedral phase may be ex-
pected at higher power densities in the irradiated spot. In-
deed, the Raman spectrum of rhombohedral LaMnO3 shown
in the bottom of Fig. 3 is very similar to the spectra obtained
after irradiation of orthorhombic LaMnO3 with a higher laser
power. As expected, at lower power densities ~in our case at
a laser power below 1.87 mW! the spectral changes are re-
versible.

Figure 4 shows the Raman spectra of LaMnO3 as ob-
tained with the lowest power density used (23107 W/cm 2)
from oriented grains in the same scattering configurations as
in the case of YMnO3 ~Fig. 2!. For comparison the
x8x8(z8z8) spectrum of YMnO3 as measured with 43108

W/cm 2 is also included. Obviously, the number of pro-
nounced Raman lines in the spectra of LaMnO3 is less than
in YMnO3, while their linewidths are larger in spite of much
lower laser power used. Lines of Ag symmetry are observed
at 140, 198, 257, 284, and 493 cm 21, of B2g symmetry at

TABLE II. Experimental values of the Raman frequencies for various RZO 3 compounds with Pnma structure. The results of the LDC’s
for YMnO3 and LaMnO3 are also given. The assignment either indicates the vibrating atoms and the vibrational direction ~in brackets! or
correspond to mode assignment of Fig. 5. The experimental lines in the yx8(yz8) spectra are assigned to modes of B1g or B3g symmetry by
comparison to the LDC results.

Mode YMnO3 YMnO3 LaMnO3 LaMnO3 Assign YAlO3 YCrO3 GdCrO3 ErFeO3 HoFeO3

exp. LDC exp. LDC ment ~Ref. 6! ~Ref. 6! ~Ref. 6! ~Ref. 7! ~Ref. 8!

Ag 151 104 140 81 R(x) 150 156 141 112 109
Ag 188 147 198 162 R(z) 197 188 158 140 139
Ag 288 223 257 246 Ag(2) 278 282 260 273 270
Ag 323 304 263 O1(x) 345 346 326 345 340
Ag 396 407 284 326 Ag(4) 412 429 390 434 425
Ag 497 466 493 480 Ag(3) 492 480 505 495
Ag 518 524 582 Ag(1) 553 566 562

B1g 205 181 184 182 R(y)
B1g 284 288 254 B1g(3) 270 272 246 264
B1g 383 342 347 B1g(4) 403 413 365
B1g 413 575 B1g(2) 555
B1g 593 693 B1g(1)

B2g 151 137 109 123 R(z) 157 112
B2g 220 162 170 150 R(x) 219 223 161 163 159
B2g 317 285 218 B2g(4)
B2g 341 393 308 369 O1(z) 283 318 285 322
B2g 481 470 481 464 B2g(3) 502 480 505
B2g 537 583 509 B2g(2) 552
B2g 616 617 611 669 B2g(1)

B3g 178 145 158 R(y) 197 176 157
B3g 336 363 320 343 B3g(4)
B3g 390 462 B3g(3) 470 487 472 481
B3g 476 603 B3g(2) 540 569 568
B3g 610 692 B3g(1)
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Figure 2.10: Comparison of the experimental and numerical (lattice dynamical calcula-

tion) results of the Raman frequencies (unit cm−1) for LaMnO3 and YMnO3 with Pnma

structure. Table taken from Ref. [Iliev et al. 1998]

0.08 eV. These results are supported by optical experiments which show a sharp peak

located at around 0.07 eV in the optical reflectivity spectra [Okimoto et al. 1995,

Jung et al. 1998, Takenaka et al. 1999, Tobe et al. 2004]. For simplicity, we take

Ω = 0.07 eV for all the three modes in this work.

30



2.4 Realistic microscopic model

Coulomb interaction The Coulomb interaction can either be calculated by the

constrained LDA method or estimated by experiments. In the constrained LDA

method [Dederichs et al. 1984, Gunnarsson et al. 1989, Anisimov & Gunnarsson 1991,

Solovyev & Dederichs 1994], the interacting d− or f−electrons of one site are ki-

netically decoupled from the rest of the system. By changing the number nd of the

interacting electrons on this site, the ground state energy can be calculated by LDA.

Using the fitting function

E(nd) = E0 +
1

2
Ūnd(nd − 1) + (εLDAd + ∆εd)nd, (2.26)

we can obtain the average Coulomb interaction Ū and the interaction modification

of the LDA energy ∆εd which can be absorbed into the LDA Hamiltonian. In the

case of LaMnO3 with two eg orbitals, the average Coulomb interaction is

Ū =
U + U − 2F + U − 3F

3
= U − 5

3
F. (2.27)

In Ref. [Satpathy et al. 1996a], the on-site Coulomb interaction is estimated to

be 8 − 10 eV and J, F ≈ 0.9 eV for LaMnO3 and CaMnO3. Taking into account

the screening effects, the effective Coulomb interaction can be much smaller. In

Ref. [Yamasaki et al. 2006], LDA calculations for the ferromagnetic phase produce

a similar result of J ≈ 0.9 eV.

The Coulomb interaction can also be estimated by experiments. However, to

the best of our knowledge, there is no generally accepted estimate of the Coulomb

interaction U for manganites. As an example, we show here how the Coulomb

interaction can be estimated from high resolution photoemission spectroscopy (PES)

and x-ray absorption spectroscopy (XAS) [Park et al. 1996]. The basic idea is to

measure the binding energy of the localized electrons by photoemission and the

lowest excitation energy by oxygen 1s x-ray absorption spectroscopy. For charge-

transfer insulator and Mott-Hubbard insulator, the separation between the binding

and excitation energies corresponds to the smaller one of the charge transfer energy

∆ct and the Coulomb energy Ū [Zaanen et al. 1985].

Fig. 2.11 plots the one electron removal (N → N − 1, PES) and addition (N →
N + 1, XAS) spectra of LaMnO3 and CaMnO3. The three states with N − 1, N

and N + 1 electrons are identified as t22g(
3T1), t32g(

4A2) and t32ge
1
g(

5E) for CaMnO3

(Mn4+) and t32g(
4A2), t32ge

1
g(

5E) and t32ge
2
g(

6A1) for LaMnO3 (Mn3+). The symbol

in the bracket indicates the symmetry of the state. In Fig. 2.11, the states N ± 1

are denoted by vertical lines. The energy difference between these two states can

be read directly, giving E4+
CF = 3.2± 0.4 eV for CaMnO3 and E3+

CF = 3.4± 0.4 eV for

LaMnO3. On the other hand, the charge transfer energy ∆ct was estimated to be
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FIG. 2. One electron removal, N ! N 2 1, and addition,
N ! N 1 1, excitation spectra as described in the text.

N 1 1 state. The energy separations between the lowest
energy N 2 1 and N 1 1 peaks of CaMnO3 and of
LaMnO3 were estimated to be E

41
CF ­ 3.2 6 0.4 eV and

E
31

CF ­ 3.4 6 0.4 eV, respectively. According to a recent
many-body analysis for other transition metal oxides,
these energy separations are attributed to the smaller
energy of the O 2p to Mn 3d charge transfer energy,
D, and the on-site d-d Coulomb energy, U [18]. For
CaMnO3, D is 3.0 6 0.5 eV as estimated from our O
1s RPES data [19] and U is 5.2 6 0.3 eV as calculated
from the Racha parameters of MnO [20]. Using the same
methods, D and U of LaMnO3 were estimated to be
4.5 6 0.5 eV and 3.5 6 0.3 eV, respectively, which are
comparable to those deduced from Mn 2p photoemission
analysis [4]. Therefore, E

41

CF of CaMnO3 is associated
with the smaller energy D, and E

31

CF of LaMnO3 is
associated with the smaller energy U, consistent with the
findings, E

41
CF ø D and E

31
CF ø U [21].

For the mixed valent system La12xCaxMnO3 with 0 ,

x , 1, which can be described electronically by a linear
combination of LaMnO3 and CaMnO3 as demonstrated in
Fig. 1, ECF is 1.5 6 0.4 eV as estimated from the energy
separation between the t

3
2ge1

gs5Ed state of CaMnO3 and
the t

3
2gs4A2d state of LaMnO3. This ECF corresponds to

the energy for the t
3
2ge1

gsMn31 sited 1 t
3
2gsMn41 sited !

t
3
2gsMn31 sited 1 t

3
2ge1

gsMn41 sited charge fluctuation
process, which is supposed to vanish in the double-
exchange model. The observed finite ECF suggests a
strong polaron effect due to localization of eg elec-
trons. The localization, which can be attributed to the
random distribution of Ca21 incorporating with the
strong correlation effect of Mn 3d electrons, causes
local lattice distortions, the so called “small polarons,”
and contributes the difference, ECF , in potential at
Mn31 and Mn41 sites. This small polaron, which has
been discussed in the Anderson localization [22], is
induced from a large difference s, 20%d in the ionic
size of Mn31 and Mn41 (6%–7% difference in Mn-O
distance) [23], and should be distinguished from the
Jahn–Teller-type polaron, proposed recently [3], which

results from tetragonal distortions of MnO 6 octahedra to
lower the Mn31 st3

2ge1
gd energy. Considering the disap-

pearing temperature s,700 Kd of the Jahn–Teller-type
lattice distortion in LaMnO3, the Jahn-Teller distortion
is expected to contribute at most a few tenths of an eV
which is much smaller than the observed ECF . Hence,
the charge fluctuation energy ECF , which is responsible
for the low conductivity above TC , should be understood
by the strong small polaron effects including a minor
contribution of the Jahn-Teller distortion. The fact,
furthermore, that the system with 0 , x , 1 can be
approximated electronically to a linear superposition of
x ­ 0 and 1 provides the spectroscopic evidence for the
strong small polaron effects in this system.

To study the electronic change accompanied by the
ferromagnetic transitions in La0.67Ca0.33MnO3 sTC ø
260 Kd and in La0.7Pb0.3MnO3 sTC ø 330 Kd, we have
measured their high resolution PES and Mn 2p RPES
spectra at various temperatures. The high resolution
and on-resonance spectra were taken at 110 and 642 eV
photon energies with 0.06 and 0.6 eV resolutions, re-
spectively. Because of the limitation of our temperature
controller, we were unable to raise the sample tempera-
ture beyond the TC of La0.7Pb0.3MnO3. Figure 3(a)
shows the high resolution wide-scan PES spectra of both
samples, exhibiting nearly no difference between the
two extreme temperatures, except for a minor chemical-
potential shift of ,70 meV and an intensity variation near
the Fermi level. The magnified spectra near the Fermi
level are shown in Fig. 3(b). For La0.67Ca0.33MnO3, no
density of states at the Fermi level ns´Fd is observed in
the 280 K spectrum, but ns´Fd increases upon cooling
below TC and a metallic Fermi edge is clearly observed
in the 80 K spectrum. A similar temperature dependence
was also observed in La0.7Pb0.3MnO3. These results
provide conclusively that the ferromagnetic transition
is accompanied by an MI transition, which causes the
large resistivity change near TC , and the high resistivity
above TC is not due to the mobility reduction by spin
disorder but due to the disappearance of density of
states at EF . Furthermore, the gradual appearance of
ns´Fd upon cooling is also consistent with the resistivity
behavior showing no discontinuity near TC as well as the
considerable decrease even well below TC [8].

Although the MI transition at EF was clearly observed
in the 110 eV high resolution spectrum, the temperature
dependence of the Mn 3d states is not conclusive due to
the O 2p states which have 2 times larger intensity at
this photon energy [13]. The obscured Mn 3d states can
be explored through the Mn 2p RPES process, 3dn

!

c3dn11
! 3dn21 1 e2, where c is a Mn 2p hole. The

Mn 3d states are enhanced by more than 20 times and
thus completely dominate the valence band spectrum at
the on-resonance. Figure 3(c) shows the on-resonance
spectra of both compounds, which exhibit clearly two 3d-
removal states. One locates at ,2.5 eV binding energy
with t

2
2ge1

gs4T2d symmetry and the other at ,1 eV with
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Figure 2.11: Photoemission spectra (N → N − 1) and O 1s x-ray absorption spectra

(N → N + 1) for CaMnO3 and LaMnO3. The O 1s spectra are shifted to agree with its

inverse photoemission spectrum for LaMnO3. The 1 eV shoulder in the XAS spectra of

LaMnO3 is not intrinsic but due to excess oxygen which introduces extra Mn4+ as Ca

dopant does. Figure taken from Ref. [Park et al. 1996].

W U J (F) Ω ∆cf

3.0− 3.6 eV 3− 4 eV ≈ 0.9 eV 0.07− 0.08 eV 1− 2 eV

Table 2.1: Parameters estimated for LaMnO3. W: bandwidth; U: intra-orbital

Coulomb interaction; F: exchange interaction; J: Hund’s coupling; Ω: phonon fre-

quency; ∆cf : crystal field splitting for orthorhombic LaMnO3.

3.0 ± 0.5 eV for CaMnO3 and 4.5 ± 0.5 eV for LaMnO3 [Park et al. 1996]. Thus the

energy separation in Fig. 2.11 gives the average Coulomb interaction Ū ≈ 3.5 eV for

LaMnO3. If a crystal field splitting 1− 2 eV is substracted [Yamasaki et al. 2006],

the Coulomb interaction U is estimated to be 3− 4 eV, which is also supported by

spectral ellipsometry for LaMnO3 [Kovaleva et al. 2004].

To summarize, we have estimated the parameters of the realistic model (2.20) from

experiments. The results are collected in Table 2.1. Very different estimates can be

found in the literature (see, e.g., [Dagotto et al. 2001]). An independent estimate of

these parameters will be presented in section 5.3 by fitting DMFT results to optical

data in both undoped and doped manganites.
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3 Dynamical mean-field theory

In this chapter, we discuss the dynamical mean-field theory (DMFT) which rep-

resents the presently most reliable method for the local dynamics of a quantum

many-body system. In section 3.1, we take the Holstein model and the one-band

Hubbard model as examples to show how DMFT with quantum Monte Carlo (QMC)

simulations as an impurity solver can be implemented in practice for coupled boson-

fermion systems. The QMC simulations produce Green’s function in imaginary time.

Real frequency results, e.g, the spectral density, are obtained by using the maximum

entropy method which is introduced in section 3.2. For direct comparisons with ex-

periments, we also derive the formula for the optical conductivity (section 3.3) and

the spin susceptibility (section 3.4) within DMFT. In section 3.5, a brief introduc-

tion is given to the LDA and LDA+DMFT approaches which will be used in the

next chapter to study the pressure-induced metal-insulator transition in LaMnO3.

3.1 Dynamical mean-field theory

The basic idea of DMFT is to approximate a lattice problem by a single-site problem.

The site is assumed to be coupled to an effective bath resembling the rest of the lat-

tice. In this way, a huge number of degrees of freedom are reduced into the effective

bath and the problem is simplified dramatically [Georges et al. 1996]. The most suc-

cessful application of DMFT is the study of the Mott transition in the half-filled Hub-

bard model [Rozenberg et al. 1992, Georges & Krauth 1992, Georges & Krauth 1993,

Pruschke et al. 1993a, Pruschke et al. 1993b, Zhang et al. 1993, Caffarel&Krauth 1994,

Laloux et al. 1994, Rozenberg et al. 1994a, Rozenberg et al. 1994b, Moeller et al. 1995].

The mathematical reason of DMFT is the simplification of the lattice problem in

the limit of infinite dimensions (d → ∞), which was first realized by Metzner and

Vollhardt in 1989 [Metzner & Vollhardt 1989]. After proper scaling of the hopping

integral to keep the kinetic energy per site finite,

tij →
tij√
d
|i−j| , (3.1)

the self-energy Σ(ri, rj; iωn) in infinite dimensions can be proved by perturbation the-

ory to have only local elements [Müller-Hartmann 1989a, Müller-Hartmann 1989c,
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Müller-Hartmann 1989b]

Σ(ri, rj; iωn)
d→∞
= Σ(iωn)δij, (3.2)

where ωn is the Matsubara frequency and ri the position of the i-th lattice site. Also

the Luttinger-Ward functional Φ[G(iωn)] depends only on the local Green’s function

G(iωn) ≡ G(ri, ri; iωn) so that

Σ(iωn) =
δΦ[G(iωn)]

δG(iωn)
, (3.3)

together with the Dyson equation

G(iωn) =
1

V
∑

k

1

iωn + µ− εk − Σ(iωn)
, (3.4)

implies a self-consistent solution for the local quantities of the original lattice prob-

lem [Georges et al. 1996]. Here µ is the chemical potential and εk the dispersion of

the lattice model,

It was later realized that the above method is equivalent to approximate the lat-

tice model by an Anderson impurity coupled to an effective bath [Ohkawa 1991a,

Ohkawa 1991b, Georges & Krauth 1992]. In infinite dimensions, DMFT is exact. In

finite dimensions, it still provides a good approximation as long as spatial fluc-

tuations are small. The self-consistent functional equations can in general be de-

rived by the cavity method [Georges et al. 1996], in which one separates a local

site from the rest of the system, the hopping terms from this selected site to the

rest of the system are treated as an external source, and all the other degrees

of freedom are then integrated out to give the local effective action. The self-

consistent functional equations for G(iωn) and Σ(iωn) have been derived for the pe-

riodic Anderson model [Kuramoto & Watanabe 1987], the Falicov-Kimball model

[Brandt & Mielsch 1989, Brandt & Mielsch 1990, Brandt & Mielsch 1991] and the

Hubbard model [Janǐs 1991, Ohkawa 1991a, Ohkawa 1991b, Georges & Kotliar 1992,

Jarrell 1992].

To see how DMFT works, we take the one-band Hubbard model as an example.

The Hamiltonian reads

H = −
∑

〈ij〉σ
tij(c

†
iσcjσ + c†jσciσ) + U

∑

i

ni↑ni↓. (3.5)

In DMFT, the local Green’s function on a single site is given by the functional

equation

G(τ) = − 1

Z

∫
[Dc†Dc]cσ(τ)c†σ(0)e−S, (3.6)
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3.1 Dynamical mean-field theory

where the partition function is defined as

Z =

∫
[Dc†Dc]e−S. (3.7)

The rest of the system has been integrated out, giving the effective action

S = −
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ ′) + U

∫ β

0

dτn↑(τ)n↓(τ). (3.8)

Here β = 1/T is the inverse temperature and G−1
0 (τ − τ ′) plays the role of the Weiss

effective field in the mean-field theory. It can be shown that [Georges et al. 1996]

G−1
0 (iωn) = G−1(iωn) + Σ(iωn), (3.9)

where

G0(iωn) =

∫ β

0

dτeiωnτG0(τ),

G(iωn) =

∫ β

0

dτeiωnτG(τ). (3.10)

Since the local Green’s function G(iωn) is also related to the local self-energy Σ(iωn)

by the Dyson equation, Eqs. (3.4), (3.6) and (3.9) form a self-consistent set of

equations for the one-band Hubbard model (3.5). The solution can be obtained

numerically. We can first take an arbitrary input Σ(iωn). G0(iωn) is then calculated

from Eqs. (3.4) and (3.9). If the impurity model (3.8) can be solved, we get G(iωn)

which, together with G0(iωn), yields a new Σ(iωn) from Eq. (3.9). For clarity, the

whole DMFT procedure is shown in Fig. 3.1. The iteration continues until a self-

consistent solution (Σ, G) is reached.

Thus the main task of DMFT is to solve the impurity model (3.8). In the past

decades, many methods developed originally for the Anderson impurity problem

[Hewson 1993] have been implemented as impurity solvers of DMFT. The perturba-

tion approach [Yamada 1975, Yosida & Yamada 1975] was turned into the iterated

perturbation theory (IPT) [Georges & Krauth 1992]. The quantum Monte Carlo al-

gorithm by Hirsch and Fye [Hirsch & Fye 1986] was generally applied [Jarrell 1992,

Rozenberg et al. 1992, Georges & Krauth 1992], as well as the exact diagonalization

technique (ED) [Caffarel&Krauth 1994, Si et al. 1994], the numerical renormaliza-

tion group theory (NRG) [Sakai & Kuramoto 1994], the non-crossing approximation

(NCA) [Pruschke et al. 1993a], the equation of motion approach (EOM) [Gros 1994],

etc.
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Figure 3.1: DMFT self-consistent loop. Given an arbitrary input Σ, the on-site Green’s

function G and the Weiss effective field G0 are calculated from Eqs. (3.4) and (3.9).

The effective impurity model can be solved in many different ways, producing the local

interacting Green’s function G. A new Σ then follows from Eq. (3.9). The loop is iterated

until a converged set (Σ, G) is reached.

Each method has its own advantages and disadvantages. IPT, NCA, and EOM

are simple but limited because of their inherent approximations, while QMC and

NRG are exact methods but both require a huge computational effort. NRG allows

for calculations at very low temperature but the computational effort increases ex-

ponentially with the number of the local degrees of freedom. Thus for multi-orbital

systems, one usually uses QMC as the impurity solver since its numerical effort only

grows quadratically with the number of the local degrees of freedom. However, the

computational time of (finite temperature) QMC increases strongly (cubically) with

decreasing temperature so that we can only work at relative high temperatures.

The basic idea of QMC is to generate a set of field configurations such that the

functional integral can be replaced by the averaging over these configurations, for

each of which the physical quantities such as the Green’s function can be solved ex-

actly. For the detail of the method, we refer to the review article [Foulkes et al. 2001].

In the following, we take the Holstein model and one-band Hubbard model as ex-

amples to show how QMC can be used to treat local electron-phonon and electron-

electron interactions in coupled boson-fermion systems, respectively.

3.1.1 Holstein model

In this section, we show how QMC can be implemented for coupled boson-fermion

systems without electron-electron interactions [Blankenbecler et al. 1981]. We take
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3.1 Dynamical mean-field theory

the one-band Holstein model as an example. The Hamiltonian reads

H = −
∑

〈ij〉σ
tij(c

†
iσcjσ + c†jσciσ)− g

∑

i

niφi +
1

2

∑

i

(π2
i + ω2φ2

i ), (3.11)

where φi is the local Holstein phonon at site i and πi is the conjugate momentum of

φi. In DMFT, the effective action of the associated impurity model is written as

S=−
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†σ(τ)(Gσ0 )−1(τ−τ ′)cσ(τ ′)−g
∫ β

0

dτn(τ)φτ+
1

2

∫ β

0

dτ((φ′τ )
2+ω2φ2

τ ),

(3.12)

where φτ ≡ φ(τ) and φ′τ ≡ dφ(τ)/dτ . We have

G(τ) = − 1

Z

∫
[Dc†DcDφ]cσ(τ)c†σ(0)e−S,

Z =

∫
[Dc†DcDφ]e−S. (3.13)

Here D· denotes the path integral over the Grassmann variables {c†σ, cσ} or the

phonon field φ(τ). Discretizing the inverse temperature β into L time slices τl =

(l − 1)∆τ, (l = 1, · · · , L+ 1) of size ∆τ = β/L, we can define

Gσ
mn({φl}) = − 1

Z{φl}

∫
[Dc†Dc]cmσc†nσe−S{φl}, (3.14)

where cmσ = cσ(τm) and

Z{φl} =

∫
[Dc†Dc]e−S{φl},

S{φl} = −
L∑

σ;l,m=1

c†lσ(Gσ0 )−1
lmcmσ − g∆τ

L∑

l=1

nlφl +K({φl}),

K({φl}) =
∆τ

2

L∑

l=1

[(
φl+1 − φl

∆τ

)2

+ ω2φ2
l

]
, (3.15)

with periodic condition φL+1 = φ1. The kinetic energy of the phonon fields is

sometimes written as [Blankenbecler et al. 1981]

K({φl}) =
∆τ

2

L∑

l=1

[
(P 2

+ + P 2
−)φ2

l − 2P+P−φlφl+1

]
, (3.16)

with

P+ =
e∆Ω/2

√
2∆τ

, P− =
e−∆Ω/2

√
2∆τ

. (3.17)
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calculate the Green’s function

update the configuration

evaluate probability ratio

propose a local (global) update

initial setup

no

yes Metropolis reject

output

Figure 3.2: QMC updating procedure. Details can be found in the text. A global update

is usually proposed after several local updates. To use the output set for the expectation

value of the physical quantities, one has to take care of the correlations between sampled

configurations.

Eq. (3.16) reduces to Eq. (3.15) in the limit Ω∆τ � 1. It has the advantage that

the boson correlation functions at finite ∆τ reduce to the continuum ones for g = 0

[Blankenbecler et al. 1981].

The on-site Green’s function Gσ
mn is then given by

Gσ
mn =

∑

{φl}

Z{φl}
Z Gσ

mn({φl}), (3.18)

where Z{φl}/Z measures the probability of the configuration {φl}. The path integral

over φ(τ) is replaced by the sum over the discretized field configurations {φl} which

can be evaluated numerically by QMC.

The whole QMC procedure is presented in Fig. 3.2. We start from an initial

configuration, e.g., {φl = 0} and pick up randomly a time slice τm. Then a random

number x is drawn from the uniform distribution on the interval [0, 1]. We consider

a change at τm from φm to φ′m = φm + (x − 1/2)δφ. δφ is a fixed number and

controls the range of the proposed change. Depending on the parameters, it should

be carefully tuned. If δφ is too small, it would take a long time to cover all the

important configurations; whereas if δφ is too large, the configuration space would

not be well sampled.
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3.1 Dynamical mean-field theory

To generate a proper sampling, we need to know the probability ratio of the new

and old configurations,

R ≡
Z{φ′l}
Z{φl}

. (3.19)

The Metropolis algorithm will guarantee that the configurations are sampled ac-

cording to their contributions to the partition function [Metropolis et al. 1953]. The

algorithm states: the new configuration {φ′l} will be rejected if R ≤ y and accepted

if R > y. Here y is a random number from the interval [0, 1]. If the proposed change

is rejected, we pick up again a random time slice and repeat the above process. If

accepted, {φ′l} will be stored and replace {φl} for the updating procedure.

To calculate R, note that S{φl} has a quadratic form. The fermionic degrees of

freedom in Eq. (3.14) can hence be integrated out, giving

Z{φl} =
∏

σ

det (gσ) . (3.20)

The probability ratio is then

R = e−K({φ′l})+K({φl})
∏

σ

det
(
(ḡσ)−1gσ

)
, (3.21)

where we have defined

gσmn = −Gσ
mn({φl}),

ḡσmn = −Gσ
mn({φ′l}). (3.22)

Eq. (3.21) can be simplified by using the updating equation [Hirsch & Fye 1986]

ḡσ = gσ + (gσ − I)∆σḡσ, (3.23)

where I is a L× L unit matrix and

∆σ
mn =

(
eV̄

σ

e−V
σ − 1

)
mn

,

V σ
lm = −g∆τφlδlm,

V̄ σ
lm = −g∆τφ′lδlm. (3.24)

We have

R = e−K({φ′l})+K({φl})
∏

σ

det (I + (I − gσ)∆σ) , (3.25)

which can be evaluated directly from ∆σ following the proposed change and the

local Green’s function gσ of the original configuration {φl}. This saves some com-

putational efforts since we do not need to evaluate the local Green’s function for

each proposed change even if the proposal is finally rejected.

39
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For each local update at τl, ∆σ has only one nonzero element

∆σ
mn = ∆0δmnδml = (e−g∆τ(φ′l−φl) − 1)δmnδml. (3.26)

The updating equation can be simplified as

ḡσmn = gσmn +
(gσml − δml)∆0g

σ
ln

1 + (1− gσll)∆0

. (3.27)

The probability ratio is now

R = e−K({φ′l})+K({φl})
∏

σ

(1 + (1− gσll)∆0), (3.28)

The evaluation of Eq. (3.27) costs most of the computational time, so the total

computational time is proportional to L3 with a factor of L2 for Eq. (3.27) and a

factor of L for a sweep of all the L time slices.

Moreover, a global update

φl −→ φ′l = φl + x∆φ l = 1, · · ·L (3.29)

is performed after several local updates in order to improve the efficiency of the

program. This global update can be treated as a sequential combination of the L

local updates from τ1 = 0 to τL = β−∆τ . At each τl the Green’s function gσl of the

configuration {φ′1, · · · , φ′l, φk+1, · · · } and the corresponding probability ratio Rl are

calculated. The total probability ratio of the whole process is given by the product

R =
∏L

l=1 R
l. The Metropolis algorithm is then applied to decide whether the global

change is accepted. If accepted, the final configuration {φ′l} and the corresponding

Green’s function gσL will be stored for further updating procedures.

The above QMC simulations generate a ”random walk” in the configuration space

[Foulkes et al. 2001]. To avoid correlations between configurations in the set, we

only collect one sample every several sweeps. A warm-up run is also performed

in the beginning of the QMC simulations to get rid of the influence of the initial

setup. The updating procedure continues until a set E of a sufficient number of

configurations is obtained. The expectation value of each physical quantity is then

given by the averaging

〈A〉 =

∑
{φl}∈E A({φl})∑

{φl}∈E 1
. (3.30)

Especially important for our purposes is the on-site Green’s function

Gσ
mn =

∑
{φl}∈E G

σ
mn({φl})∑

{φl}∈E 1
. (3.31)
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Once we have the on-site Green’s function, it can be used in the DMFT iterations

until a convergent solution (Σ, G) is achieved.

The systematic error of the QMC calculations is about O(∆τ 2). To obtain good

results, ∆τ should be as small as possible. It cannot be too small, however, since the

computational time increases as ∆τ−3 for fixed β. One should do the extrapolation

∆τ → 0, but in practice one often uses a small ∆τ . In this work we take ∆τ = 0.2

so that we can reach the room temperature at about β = 30− 40.

3.1.2 Hubbard model

For the one-band Hubbard model (3.8), the effective action in discretized form can

be written as

S = −
L∑

σ;l,m=1

c†lσ(Gσ0 )−1
lmcmσ + U∆τ

L∑

l=1

nl↑nl↓, (3.32)

where cmσ = cσ(τm). The partition function and the on-site Green’s function are

then

Gσ
mn = − 1

Z

∫
[Dc†Dc]cmσc†nσe−S,

Z =

∫
[Dc†Dc]e−S, (3.33)

where [Dc†Dc] denotes the path integral over the Grassmann variables.

Because of the Coulomb interaction Un↑n↓, the path integral in Eq. (3.33) cannot

be evaluated exactly. Neither can QMC sample the fermionic Grassmann vari-

ables {c, c†} in contrast to the bosonic phonon fields in the Holstein model. To

proceed, we introduce the so-called (discrete) Hubbard-Stratonovich transformation

[Hirsch 1983, Hirsch & Fye 1986],

e−U∆τn↑n↓+U∆τ/2(n↑+n↓) =
1

2

∑

s=±1

eλs(n↑−n↓), (3.34)

with λ = arccosh(eU∆τ/2). The Coulomb interaction term can be decoupled so that

S{sl} = −
L∑

σ;l,m=1

c†lσ(Gσ0 )−1
lmcmσ − λ

L∑

l=1

sl(nl↑ − nl↓), (3.35)

where sl = ±1 is the Ising-like auxiliary field at τl. The additional term U∆τ(n↑ +

n↓)/2 from the decomposition has been absorbed into the definition of Gσ0 for sim-
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plicity. We have

Z =
∑

{sl}
Z{sl},

Gσ
mn =

∑

{sl}

Z{sl}
Z Gσ

mn({sl}), (3.36)

where

Z{sl} =

∫
[Dc†Dc]e−S{sl},

Gσ
mn({sl}) = − 1

Z{sl}

∫
[Dc†Dc]cmσc†nσe−S{sl}. (3.37)

Now Z{sl} can be calculated exactly and the full partition function can be obtained

by summing over all the auxiliary fields {sl}, which can be done by QMC simulations

as shown in Fig. 3.2. Again for each local update at τl, we have the updating equation

ḡσmn = gσmn +
(gσml − δml)∆0g

σ
ln

1 + (1− gσll)∆0
, (3.38)

with

V σ
lm = −λslσδlm,

∆σ
0 = e−λ(s′l−sl)σ − 1, (3.39)

where s′l (sl) is the auxiliary field in the new (old) configuration. The probability

ratio is given by

R =
∏

σ

(1 + (1− gσll)∆0). (3.40)

Numerically, we start from a random configuration {s0
l }. The Green’s function of

this configuration can be calculated from the Weiss effective field Gσ0 (corresponding

to {sl = 0}) by using the updating equation (3.38) sequentially from τ1 to τL. For

local updates, we pick up randomly a time slice τl and try sl → −sl. The probability

ratio is given by Eq. (3.40). We then apply the Metropolis algorithm to this local

update. As before, the whole QMC procedure follows the same steps as shown in

Fig. 3.2. Global updates are not considered for the Ising-like auxiliary fields.
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3.1.3 Realistic microscopic model

We can extend the above discussions to the realistic microscopic model (2.20). The

partition function and the on-site Green’s function are

Gµν;σ
mn = − 1

Z

∫
[DSDc†DcDQ2DQ3]cmµσc

†
nνσe

−S,

Z =

∫
[DSDc†DcDQ2DQ3]e−S, (3.41)

which contain the path integral over both fermionic and bosonic degrees of freedom,

as well as the integral over the t2g spin S which is assumed to be classical and

independent of the imaginary time variable τ . Due to spin-rotational symmetry,

the integral over the orientation of S can be replaced by the sum over two opposite

orientations Sz = ±|S| [Held 1999], giving

Gµν;σ
mn = −1

2

∑

Sz=±|S|

1

Z ′
∫

[Dc†DcDQ2DQ3]cµmσc
†
νnσe

−S,

Z ′ =
1

2

∑

Sz=±|S|

∫
[Dc†DcDQ2DQ3]e−S

=

∫

Sz=|S| or −|S|
[Dc†DcDQ2DQ3]e−S =

Z
4π
, (3.42)

so we only need to take care of the path integral of the fermionic and bosonic

degrees of freedom. For the paramagnetic phase, we do the calculations for a single

t2g spin orientation such as Sz = +|S| and then average over spin indices. For the

ferromagnetic phase, we assume full spin polarization.

By using the Hubbard-Stratonovich transformation, we have to introduce six

Ising-like auxiliary fields in order to decouple the intra- and inter-orbital Coulomb

interactions in Eq. (2.20). These discrete fields will be sampled together with the

two Jahn-Teller fields. We define (set Sz = +|S|)

Z{sl;Ql} =

∫
[Dc†Dc]e−S{sl;Ql},

Gµν;σ
mn ({sl;Ql}) = − 1

Z{sl;Ql}

∫
[Dc†Dc]cmσc†nσe−S{sl;Ql}, (3.43)

so that

Z =
∑

{sl;Ql}
Z{sl;;Ql},

Gµν;σ
mn =

∑

{sl;Ql}

Z{sl;Ql}
Z Gµν;σ

mn ({sl;Ql}), (3.44)
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in which {sl;Ql} denotes the field configuration.

The effective action in the above equations can be easily written as

S({sl;Ql}) = S0 +KQ + SJ + SQ + SU , (3.45)

with

S0 = −
∑

lm;µνσ

c†lµσ(Gσ0 )−1
lm;µνcmνσ,

KQ =
∆τ

2

∑

l;a

[(
Ql+1
a −Ql

a

∆τ

)2

+ Ω2(Ql)2

]
,

SJ = −J |S|∆τ
∑

l;µ

(nlµ↑ − nlµ↓)

SQ = −g∆τ
∑

l;µνσ

c†lµσ(Ql
2τ

x +Ql
3τ

z)µνclνσ,

SU = −
∑

l

[
λUs

l
U(nl1↑ − nl1↓) + λU s̃

l
U(nl2↑ − nl2↓)

]

−
∑

l;σ

[
λV s

lσ
V (nl1σ − nl2σ̄) + λV−Fs

lσ
V−F (nl1σ − nl2σ)

]
. (3.46)

Here Ql
a ≡ Qa(τl), cmνσ ≡ cνσ(τm), and λx = arccosh(ex∆τ/2). {slU(s̃lU), slσV , s

lσ
V−F}

are the Ising-like auxiliary fields for {Unm↑nm↓, V n1σn2σ̄ , (V − F )n1σn2σ}, respec-

tively.

The effective action S is spin-diagonal but has off-diagonal elements between eg
orbitals. As before, we have to introduce a 2×2 matrix at each time slice τl:

V lσ = V lσ
Q + V lσ

s , (3.47)

where

V lσ
Q = −

(
g∆τQl

3 g∆τQl
2

g∆τQl
2 −g∆τQl

3

)
(3.48)

is from the phonon contribution SQ and

V lσ
s = −

(
λUs

l
Uσ + λV s

lσ
V + λV−Fs

lσ
V−F 0

0 λU s̃
l
Uσ − λV slσ̄V − λV−F slσV−F

)
(3.49)

from the Coulomb contribution SU . The updating equation for a local update at τl
is then (in matrix form)

ḡσmn = gσmn + (gσml − δml)∆0 [1 + (1− gσll)∆0]−1 gσln, (3.50)

44



3.2 Maximum entropy method

with

∆σ
0 = eV̄

σ

e−V
σ − 1,

gµν;σ
mn = −Gµν;σ

mn ({slσ;Ql}),
ḡµν;σ
mn = −Gµν;σ

mn ({s̄lσ; Q̄l}). (3.51)

This gives the probability ratio

R = e−KQ̄+KQ
∏

σ

det (1 + (1− gσll)∆0) , (3.52)

in which the determinant is over the orbital indices. In the QMC simulations, each

proposed change includes a shift of all the boson fields and a flip of one random

Ising-like auxiliary spin. A global update of the boson fields is also performed every

several local updates. Once again, the whole QMC procedure follows the same steps

as shown in Fig. 3.2.

3.2 Maximum entropy method

The Green’s function obtained by DMFT (QMC) is in imaginary time. To extract

real frequency informations and compare them with experiments, we need to cal-

culate the electron spectral function A(ω) = −ImG(ω)/π which is related to the

Green’s function G(τ) by

G(τ) =

∫ ∞

−∞
dω

e−ωτ

1 + e−βω
A(ω), (3.53)

or in discrete form

G(τi) =
N∑

k=−N
∆ω

e−τiωk

1 + e−βωk
A(ωk), (3.54)

where we have defined ωk = k∆ω, k = −N, · · · , N in the range of [−N∆ω,N∆ω]. N

has to be large enough so that the spectral weight out of the above range is negligible.

Eq. (3.54) is a linear equation. However, a direct inversion of Eq. (3.54) cannot

produce good results, especially at large frequencies, because of the exponential

nature of the kernel e−ωτ/(1+e−βω) and the incomplete information from the discrete

DMFT (QMC) data points.

In this work we use the maximum entropy method (MEM) in which A(ωk) is

treated as unknown quantities to be susbtracted from the probability distribution

of the DMFT data {〈G(τi)〉,∆G(τi)} [Jarrell & Gubernatis 1996]. ∆G(τi) denotes

the systematic error or statistical fluctuation of G(τi). We are going to find a
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probability function P (A|〈G〉) which gives the most probable A(ωk) consistent with

the DMFT data {〈G(τi)〉,∆G(τi)}. Here P (a|b) is the conditional probability of a

given b.

In DMFT (QMC), ∆G(τi) can be obtained by additional iterations (called mea-

surements) after a self-consistent set of (Σ, G) is reached. The number of sweeps

in each measurement is kept relative small so that the statistical fluctuations of

the QMC data can be calculated by analyzing the the numerical data of different

measurements. We have

∆G(τi) =

√
〈G(τi)2〉 − 〈G(τi)〉2

M − 1
, (3.55)

where we assume M measurements and 〈·〉 means the average of all measurements.

We assume that correlations between G(τi) at different time slices can be ne-

glected, so that the distribution of each G(τi) approaches a Gaussian in the limit of

large M according to the central limit theorem:

P (G(τi)) =
1√

2π∆G(τi)
e−χ

2
i /2, (3.56)

where

χ2
i =

(〈G(τi)〉 −G(τi)

∆G(τi)

)2

. (3.57)

For every A(ωk) the corresponding G(τi) can be evaluated from Eq. (3.54), giving

P (〈G〉|A) ∝ e−χ
2/2 (3.58)

where χ2 =
∑L

i=1 χ
2
i . P (〈G〉|A) is called the likelihood function and represents the

probability that this A(ωk) yields 〈G(τi)〉 within the DMFT (QMC) error ∆G(τi).

It is related to P (A|〈G〉) by the Bayes’ theorem

P (A|〈G〉) = P (〈G〉|A)P (A)/P (〈G〉), (3.59)

where P (A) is the prior probability of A(ωk) and P (〈G〉) is a constant.

It can be shown that the prior probability of unnormalized A(ωk) is determined

by the entropy [Skilling 1989]

S =

N∑

k=−N
∆ω

(
A(ωk)−m(ωk)− A(ωk) ln

(
A(ωk)

m(ωk)

))
, (3.60)

where m(ωk) is a positive-definite function and usually taken as uniform. Defining

the entropic prior

P (A|α) ∝ eαS, (3.61)
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3.3 Static spin susceptibility

we have

P (A) = P (A|α)P (α). (3.62)

For each α, P (A|α) has its maxima at A(ωk) = m(ωk), so m(ωk) is called the default

model. If α is known, the probability of the spectral density A(ωk) given the DMFT

data {〈G(τi)〉,∆G(τi)} is

P (A|〈G〉, α) ∝ eαS−χ
2/2, (3.63)

which can be maximized to give the optimal A(ωk). The selection of α (or P (α))

leads to different methods such as the classic MEM [Gull 1989], the historic MEM

[Gull & Daniell 1978, Skilling & Bryan 1984], and the Bryan’s method [Bryan 1990].

A brief introduction to these different methods can be found in the review article

[Jarrell & Gubernatis 1996]. A maximum entropy program released by A. Sandvik

is used in this work.

3.3 Static spin susceptibility

One of the most important quantity in doped manganites is the Curie temperature

Tc. Above Tc, the static spin susceptibility χ(T ) in the paramagnetic phase has the

asymptotic behavior

χ(T )−1 ∼ T − Tc, T → Tc. (3.64)

If χ(T ) is known, the Curie temperature can be easily obtained.

Physically, the spin susceptibility measures the magnetic response of the system

to the perturbation of an external magnetic field. In the linear response theory, this

leads to the formula

χ(k, iωn)ab =

∫ β

0

dτeiωnτ
∑

j

eik·rj〈T sz(rj, τ)sz(0, 0)〉, (3.65)

where sz is the z−component of the spin operator of the conduction electrons.

In the limit of infinite dimensions, the formula can be much simplified. Detailed

discussions can be found in Ref. [Georges et al. 1996]. Here we follow the derivation

in [Held 1999] and extend it to multi-orbital systems. The method is specially

designed for calculating the static spin susceptibility in DMFT.

Note that a small magnetic field x shifts the dispersion of the conduction electrons

as

εxµσk = εµσk − xfxµσ, (3.66)
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3 Dynamical mean-field theory

where fxµσ (= σ) is introduced for the sake of generality. This results in a small

change of the electron occupation number so that we can calculate the static spin

susceptibility directly by

χ(T ) =
1

2

∑

µσ

fxµσ
∂nµσ(T )

∂x

=
1

2

∑

µσ

fxµσ
∂Gµσ(τ = 0)

∂x

=
1

2β

∑

nµσ

fxµσ
∂Gµσ(iωn)

∂x
. (3.67)

The external field x can be absorbed into the definition of Gµσ0 in the impurity

effective action (3.8), so that the derivative of the functional equation for the local

Green’s equation yields

∂Gµσ(τl)

∂x
=
∑

m;νσ′

Y τl;µσ
τm;νσ′γ

νσ′
τm , (3.68)

where

Y τl;µσ
τm;νσ′ =

1

L

∑

nk

Γτl+τn,τn;µσ
τk,τm+τk;νσ′ ,

Γτlτk ;µσ
τmτn;νσ′ = −〈T clµσc†kµσc†mνσ′cnνσ′〉+ 〈T clµσc†kµσ〉〈T c†mνσ′cnνσ′〉 (3.69)

and

γµστl =
∂(Gµσ0 )−1

τl,0

∂x
|x=0. (3.70)

The Weiss effective field Gµσ0 , as well as the interacting Green’s function Gµσ and

the local self-energy Σµσ, have no spin and orbital off-diagonal elements because of

the spin and orbital rotational symmetry. The second term in Γτlτk ;µσ
τmτn;νσ′ stems from

the partition function and can be evaluated directly. To calculate the first term, we

have to use the decomposition

− 〈T clµσc†kµσc†mνσ′cnνσ′〉 =
∑

{sl;Ql}

Z{sl;Ql}
Z ×

[
Gµµ;σ
lk ({sl, Ql})Gνν;σ′

nm ({sl, Ql})

− δσσ′G
µν;σ
lm ({sl, Ql})Gνµ;σ

nk ({sl, Ql})
]
, (3.71)

which is possible since we deal with independent electrons after the Hubbard-

Stratonovich transformation.
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3.3 Static spin susceptibility

The calculation of γµστl is more complicated and require the DMFT self-consistent

equations. First, by using

Gµσ(iωn) =
1

V
∑

k

[iωn + µ− εk + fxσx− Σσ(iωn)]−1
µµ , (3.72)

we have

∂Gµσ(iωn)

∂x
|x=0 = − 1

V
∑

k;ν

Aσµν(k, iωn)

(
fxνσ −

∂Σνσ(iωn)

∂x

)
Aσνµ(k, iωn), (3.73)

where the spectral function Aσ
µν(k, iωn) is defined as

Aσµν(k, iωn) = [iωn + µ− εk − Σσ(iωn)]−1
µν . (3.74)

On the other hand, the self-energy and the local Green’s function are also related

by the Dyson equation (3.9) so that

∂Σµσ(iωn)

∂x
= γµσ(iωn) +Gµσ(iωn)−2∂G

µσ(iωn)

∂x
, (3.75)

where

γµσ(iωn) =
∂Gµσ0 (iωn)−1

∂x
|x=0 =

1

∆τ

∑

l

γµστl e
iωnτl . (3.76)

Combining Eqs. (3.73) and (3.75) gives

∂Gµσ(iωn)

∂x
=
∑

ν

Rσ
µν(iωn) (fxνσ − γνσ(iωn)) , (3.77)

with

Rσ(iωn) = −D
σ(iωn)T σ(iωn)

detDσ(iωn)
,

Dσ(iωn) =

(
1− (G2σ(iωn))−2T σ22(iωn) (G2σ(iωn))−2T σ12(iωn)

(G1σ(iωn))−2T σ21(iωn) 1− (G1σ(iωn))−2T σ11(iωn)

)
,

T σ(iωn) =
1

V
∑

k

(
Aσ11(k, iωn)Aσ11(k, iωn) Aσ12(k, iωn)Aσ21(k, iωn)

Aσ21(k, iωn)Aσ12(k, iωn) Aσ22(k, iωn)Aσ22(k, iωn)

)
.(3.78)

Note that Eqs. (3.68) and (3.77) are related by the Fourier transform

∂Gµσ(τ)

∂x
=

1

β

∑

n

∂Gµσ(iωn)

∂x
e−iωnτ ,

Rσ(τ) =
1

β

∑

n

Rσ(iωn)e−iωnτ . (3.79)
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3 Dynamical mean-field theory

We arrive at the final result

∑

m;νσ′

[
Y τl;µσ
τm;νσ′ + δσσ′

Rσ
µν(τl − τm)

∆τ

]
γνστm =

∑

ν

Rσ
µν(τl)f

x
νσ, (3.80)

which is a linear equation and can be inversed to give γµστl . The static spin suscep-

tibility and hence the Curie temperature follow immediately from Eqs. (3.67) and

(3.68). The above method can be applied to other cases, e.g., the orbital suscepti-

bility.

3.4 Optical conductivity

In the last decade, the optical properties of manganites have been studied inten-

sively and provide very rich information for our understanding [Okimoto et al. 1995,

Jung et al. 1998, Takenaka et al. 1999, Tobe et al. 2004]. In order to compare di-

rectly with experimental observations, we derive the formula for the optical conduc-

tivity in this section. An extensive investigation on this subject can be found in the

thesis [Blümer 2003].

The optical conductivity measures the response of the system to an external elec-

tric field. It is defined as

jα(ω) = σαβ(ω)Eβ, (3.81)

Where E0e
−iωt is the external electric field and j(ω)e−iωt the corresponding electric

current. In the linear response theory, the Kubo formula gives [Mahan 2000]

σαβ(ω) =
iV

ω + i0+
〈〈jα, jβ〉〉ω −

ie2a2

V~2(ω + i0+)
〈K̂0

α〉δαβ, (3.82)

where a,V are the lattice parameter and the volume of the cubic unit cell, re-

spectively. jα denotes the α-component of the current operator and K0
α is the

α-component of the kinetic energy

K0 = −
∑

〈ij〉;µνσ
tijµν(c

†
iµσcjνσ + c†jµσciνσ). (3.83)

The two terms in Eq. (3.82) correspond to the paramagnetic and diamagnetic contri-

butions, respectively. In the following, we consider only the (regular) paramagnetic

term. The diamagnetic term will be canceled by the singular part of the paramag-

netic contributions.

The form of the current operator on a lattice can be obtained by the gauge trans-

formation

ψ(r) −→ ψ̃(r) = e
ie
~
R r
r0
dr′·A(r′,t)

ψ(r). (3.84)
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3.4 Optical conductivity

The vector potential of the external field

A(r, t) = E0e
−iωt/iω (3.85)

is then absorbed into the hopping integral

tijµν −→ t̃ijµν = tijµνe
ie
~
R ri
rj
dr′·A(r′,t)

. (3.86)

Expanding the kinetic energy to first order in A(r, t) yields

K̃0 = K0 +
ie

~
∑

〈ij〉;µνσ
Rij ·Atijµν(c†iµσcjνσ − c†jµσciνσ), (3.87)

with Rij = ri − rj. Remembering that the vector potential couples to the current

operator as −j ·A, we have

jα = − ie
~
∑

〈ij〉;µνσ
Rα
ijt

ij
µν(c

†
iµσcjνσ − c†jµσciνσ)

=
e

~V
∑

k;µνσ

∂εµνk

∂kα
c†kµσckνσ, (3.88)

where we have used the Fourier transform

ckµσ =
1

N

N∑

i=1

eiri·kciµσ. (3.89)

The optical conductivity is then

σαβ(ω) =
ie2

~2V(ω + i0+)

∑

µ1µ2ν1ν2

∑

k1k2σ1σ2

vµ1ν1

k1α
vµ2ν2

k2β
〈〈c†k1µ1σ1

ck1ν1σ1 ; c†k2µ2σ2
ck2ν2σ2〉〉ω,

(3.90)

where vµνkα ≡ ∂εµνk /∂kα and 〈〈A;B〉〉ω is the Fourier transform of the correlation

function 〈T (A(t)B(0))〉.
Fig. 3.3 shows the Feynman diagrams for the optical conductivity. In the limit of

infinite dimensions, the particle-hole irreducible vertex is local and independent of

k1(2). So the contributions of all higher order diagrams with vertex corrections disap-

pear after summing over k1 (k2) since the velocity vµνkα = −vµν−kα. The only nonzero

term comes from the bubble diagram [Pruschke et al. 1993a], giving (in Matsubara

frequency)

σαβ(iξm) =
e2

~2Vξmβ
∑

µ1µ2ν1ν2

∑

nkσ

vµ1ν1

kα vµ2ν2

kβ Gν1µ2

kσ (iωn)Gν2µ1

kσ (iωn + iξm), (3.91)
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1 211

k1

k1

k2

k2

vk vkvk

k1

k1

vk + ...+

Figure 3.3: Feynman diagrams for the optical conductivity. In DMFT, all the higher

order diagrams with vertex corrections disappear after summing over k1(2). Only the first

diagram, the bubble diagram, gives a nonzero contribution to the optical conductivity.

where ξm = 2πm/β is a bosonic Matsubara frequency. Using the spectral represen-

tation

Gµν
kσ(iωn) =

∫ ∞

−∞
dω

Aµνkσ(ω)

iωn − ω
, (3.92)

the sum over the fermionic Matsubara frequency ωn can be evaluated by the contour

integral technique, giving

1

~β

∞∑

n=−∞

1

(iωn − ω1)(iωn + iξm − ω2)
=
f(ω1)− f(ω2)

ω1 − ω2 + iξm
, (3.93)

where f(ω) is the Fermi distribution function. We obtain

σαβ(iξm) =
e2

~Vξm
∑

kσ

∫ ∫
dω1dω2

f(ω1)− f(ω2)

ω1 − ω2 + iξm
Tr [vkαAkσ(ω1)vkβAkσ(ω2)] ,

(3.94)

where Tr[· · · ] denotes trace over orbitals and the formula is written in the matrix

form. Back to real frequencies, we find

Reσαβ(ω) =
πe2

~V
∑

kσ

∫
dω1

f(ω1)− f(ω1 + ω)

ω
Tr [vkαAkσ(ω1)vkβAkσ(ω1 + ω)] .

(3.95)

To calculate the optical conductivity numerically, we need to the know the spectral

function Aµνkσ or the k-dependent Green’s function Gµν
kσ(ω). In DMFT, the latter is

approximated by

Gµν
kσ(ω) = [ω + µ− εk − Σ(ω)]−1

µν , (3.96)

where Σµσ(ω) is the real-frequency self-energy. Since the local Green’s function

Gµν
σ (ω) can be obtained by the maximum entropy method, Σµσ(ω) is then given by

inversion of

Gµν
σ (ω) =

1

V
∑

k

[ω + µ− εk − Σ(ω)]−1
µν . (3.97)

For the realistic model (2.23), this can only be done numerically.
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3.4 Optical conductivity

Sum rule Now we turn to the so-called f -sum rule (for a detailed discussion, see

[Blümer 2003]). The Green’s function Gµν
kσ(ω) satisfies the Kramers-Kronig relation

ReGkσ(ω) =
P
π

∫ +∞

−∞
dω′

ImGkσ(ω′)

ω′ − ω . (3.98)

Thus
∫ +∞

0

dω′
∫ +∞

−∞
dω

f(ω)− f(ω + ω′)

ω′
Tr[vkαImGkσ(ω)vkαImGkσ(ω + ω′)]

=
1

2

∫ +∞

−∞
dω

∫ +∞

−∞
dω′

f(ω)− f(ω′)

ω′ − ω Tr[vkαImGkσ(ω)vkαImGkσ(ω′)]

=

∫ +∞

−∞
dωf(ω) Tr[vkαImGkσ(ω)vkα

∫ +∞

−∞
dω′

ImGkσ(ω′)

ω′ − ω ]

= π

∫ +∞

−∞
dωf(ω) Tr[vkαImGkσ(ω)vkαReGkσ(ω)]. (3.99)

Since Eq. (3.96) implies

∂

∂kα
ImGkσ = 2ImGkσvkαReGkσ, (3.100)

we have
∫ +∞

−∞
dωf(ω) Tr[vkαImGkσ(ω)vkαReGkσ(ω)]=−π

~
Tr

[
vkα

∂nkσ

∂kα

]
=
π

~
Tr

[
∂vkα

∂kα
nkσ

]
,

(3.101)

where nkσ is the electron momentum distribution function

nkσ ≡ ~
∫
dωf(ω)Akσ(ω). (3.102)

Integrating Reσαα(ω) over all positive frequencies then yields

∫ +∞

0

dωReσαα(ω) =
πe2

2~2V
∑

kσ

Tr

[
∂vkα

∂kα
nkσ

]
. (3.103)

For a cubic lattice, the dispersion obeys

d∑

α=1

∂vkα

∂kα
= −a2εk, (3.104)

where d is the spatial dimension. Eq. (3.103) becomes

∫ +∞

0

dωReσαα(ω) = − πe2

2~2ad

1

N

∑

kσ

Tr[εknkσ], (3.105)
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3 Dynamical mean-field theory

where N = V/a3 is the number of the lattice sites and 1
N

∑
kσ Tr[εknkσ] is the kinetic

energy of the conduction electrons. Eq. (3.105) is called the f -sum rule. It relates the

integral of Reσαα(ω) to the kinetic energy of the conduction electrons. Note that we

have to use the maximum entropy method in order to get the optical conductivity,

whereas the electron momentum distribution function nkσ and hence the kinetic

energy can be calculated directly by summing over the Matsubara frequency in Eq.

(3.72). The sum rule thus provides a powerful tool for checking the reliability of our

numerical results.

Integrating over the frequency from 0 to ω, we can define

S(ω) =
2

π

∫ ω

dω′σ(ω′). (3.106)

This gives

Neff(ω) =
Vm
e2

S(ω), (3.107)

and

K(ω) =
a

e2
S(ω). (3.108)

which are often used in experiments and represent the effective carrier concentration

and their kinetic energy, respectively.

3.5 LDA+DMFT approach

In this section, we introduce the LDA+DMFT approach. The LDA approach has

been very successful for weakly-correlated systems [Jones & Gunnarsson 1989]. By

combining LDA with DMFT, the LDA+DMFT approach allows for a realistic in-

vestigation of correlated materials. Although the realistic model (2.20) is believed

to provide a good description of the electronic structure and the lattice effects in the

perovskite manganites, the realistic lattice structure is more complicated, which may

significantly affect the electronic behavior and require a better treatment. Therefore,

a comparison between LDA+DMFT investigations and DMFT model calculations

is certainly helpful. This will be done in the next chapter. In the following, we

first give a brief introduction to the density functional theory and the local density

approximation and then explain the LDA+DMFT approach.

Band theory One of the most important theorems in solid state physics is the

Bloch theorem which states that for free electrons moving in a lattice with periodic

potential V (r + R) = V (r), the wave function ψ(r) must follow the condition:

ψ(r + R) = eik·Rψ(r), (3.109)
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3.5 LDA+DMFT approach

where k is some vector in the Brillouin zone and R is any lattice vector.

The wave function can be expanded with respect to the discrete atomic states

φn(r),

ψk(r) =
∑

R,n

cne
ik·Rφn(r + R). (3.110)

By solving the Schrödinger equation,

[
− ~2

2me
52 +V (r)

]
ψ(r) = Eψ(r), (3.111)

we find that each atomic level gives rise to an energy band.

The conventional band theory does not take into account electronic correlations,

so the many-electron wave function can be constructed from the Slater determinant

of the single-electron wave functions. If the electron-electron interaction is taken

into account, we have to solve the Hamiltonian

H =
∑

σ

∫
d3rΨ†(r, σ)

[
− ~2

2me

52 +Vion(r)

]
Ψ(r, σ)

+
1

2

∑

σσ′

∫
d3rd3r′Ψ†(r, σ)Ψ†(r′, σ′)Vee(r− r′)Ψ(r′, σ′)Ψ(r, σ), (3.112)

where Ψ†(r, σ) and Ψ(r, σ) are field operators that create and annihilate an electron

at position r with spin σ, Vion(r) denotes the ionic potential and Vee(r − r′) is the

Coulomb interaction between electrons. The density functional theory was then

developed to study the ground-state properties of correlated electrons.

Density functional theory The basic theorem of the density functional formalism

was derived by Hohenberg and Kohn in 1964 [Hohenberg & Kohn 1964]. A simpler

but more general derivation was later given by Levy [Levy 1982]. The theorem

states that the ground state of Hamiltonian (3.112) is uniquely determined by its

electron density ρGS(r) if it is nondegenerate, and the ground state energy, E[ρ(r)],

is a functional of the electron density whose minimum is given by ρGS(r). In general,

E[ρ(r)] is a nonlocal functional of ρGS(r).

The theorem is easy to prove since the ground state is by definition the lowest

energy state:

EGS = min
φ(ri,σi)

〈φ(ri, σi)|H |φ(ri, σi)〉

= min
ρ(r)

min
φρ(ri,σi)

〈φρ(ri, σi)|H |φρ(ri, σi)〉 , (3.113)
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3 Dynamical mean-field theory

where φρ(ri, σi) denotes the many-electron wave function φ(ri, σi) which has the

electron density ρ(r). If we define the energy functional

E [ρ(r)] = min
φρ(ri,σi)

〈φρ(ri, σi)|H |φρ(ri, σi)〉 , (3.114)

E [ρ(r)] achieves its minimum EGS when the electron density is ρGS(r).

The theorem tells us nothing about the property of the ground state. However,

by relating the electron density to a set of one-particle wave functions φi(r) via

ρ(r) =
N∑

i=1

|φi(r)|2 , (3.115)

E [ρ(r)] can be minimized with respect to φi instead of ρ to yield the Kohn-Sham

equation [Kohn & Sham 1964, Kohn & Sham 1965, Sham & Kohn 1966]:
[
− ~2

2me

52 +Vion(r) +

∫
d3r′Vee(r− r′)ρ(r′) +

δExc [ρ(r)]

δρ(r)

]
φi(r) = εiφi(r),

(3.116)

where εi denotes the Lagrange parameters and Exc [ρ(r)] is the exchange-correlation

energy, given by the total Coulomb energy minus the Hartree energy

EHartree [ρ(r)] =
1

2

∫
d3rd3r′ρ(r′)ρ(r)Vee(r− r′). (3.117)

Eq. (3.116) has the same form as a one-particle Schrödinger equation, which,

together with Eq. (3.115), yields a set of self-consistent equations and can be solved

numerically if we can write down the explicit form of the exchange-correlation energy

functional Exc [ρ(r)]. But Exc [ρ(r)] is generally not known, so we have to make

approximations.

Local density approximation (LDA) LDA assumes that the electron density varies

slowly in the real space so that the exchange-correlation energy functional Exc [ρ(r)]

can be approximated by a function that depends only locally on the electron density,

i.e.

Exc [ρ(r)] =

∫
d3rELDAxc (ρ(r)) . (3.118)

ELDAxc (ρ(r)) can be obtained approximately from the perturbation calculation or the

numerical simulation of the jellium problem with a uniform ionic potential. The

result is [Kohn & Sham 1965]

ELDAxc (ρ(r)) = −αρ(r)
4
3 , (3.119)

where α = 3/4(3/π)1/3 can be varied in the so-called Xα method proposed by Slater

to take into account some corrections (see, e.g., [Jones & Gunnarsson 1989]). With

this approximation, Eqs. (3.115) and (3.116) can be solved in an iterative way.
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3.5 LDA+DMFT approach

LDA+DMFT approach If we interpret the Lagrange parameters εi in the Kohn-

Sham equation (3.116) as the physical energy of the one-particle excitation, the

LDA calculations produce the band structure of the electronic system. By expand-

ing the field operators with respect to a suitable basis, we obtain a tight-binding

Hamiltonian

HLDA =
∑

ij;µνσ

tijµνc
†
iµσcjνσ =

∑

k;µνσ

εµν(k)c†kµσckνσ, (3.120)

where i, j denote the lattice sites and µ, ν the orbital indices. In our work (see

chapter 4), the NMTO (Nth-order Muffin tin orbitals) method is used to generate

a minimal basis set (Mn eg basis). Details about this method can be found in

Refs. [Andersen & Saha-Dasgupta 2000, Pavarini et al. 2004, Pavarini et al. 2005,

Zurek et al. 2005].

The Kohn-Sham equation (3.116) is based on a single particle picture. For strongly

correlated system such as d and f electron system, the strong on-site Coulomb in-

teractions have to be taken into account. This yields the low-energy Hamiltonian

H = HLDA +
1

2

∑

iµνσ

Uµνniµσniνσ̄ +
1

2

∑

iµ(6=ν)σ

(Uµν − Jµν)niµσniνσ , (3.121)

where Uµν is the general intra- or inter-orbital Coulomb interaction and Jµν is the

exchange interaction. This low-energy Hamiltonian can be solved by DMFT. In this

way, the LDA+DMFT approach combines the LDA band structure calculations and

the DMFT calculations for strong electronic correlations.

The LDA+DMFT approach has been successfully applied to many materials such

as the transition metals Fe and Ni [Lichtenstein et al. 2001], the transition metal ox-

ides V2O3 [Held et al. 2001a, Laad et al. 2003],SrRuO3 [Liebsch & Lichtenstein 2000],

SrVO3 [Nekrasov et al. 2000, Nekrasov et al. 2002, Nekrasov et al. 2005], and LaTi-

O3 [Anisimov et al. 1997, Zölfl et al. 2000, Nekrasov et al. 2000], as well as the rare

earth element such as Ce [Zölfl et al. 2001, Held et al. 2001b, McMahan et al. 2003]

etc. On the other hand, the electronic correlations also affect the ground state

properties (the electron density) and thus the band structure. This feedback from

DMFT to LDA can be important. Such a fully self-consistent LDA+DMFT scheme

is presently under development [Savrasov & Kotliar 2004, Anisimov et al. 2005].
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4 Pressure-induced metal-insulator transition

LaMnO3 is well-known to be an insulator at ambient conditions, but the phys-

ical mechanism is not yet sufficiently understood. Although both the Coulomb

interaction and the Jahn-Teller coupling can give rise to the insulating behav-

ior, their relative importance in LaMnO3 is still under debate [Loa et al. 2001,

Banach & Temmerman 2004, Zenia et al. 2005]. To clarify the individual roles of

both interactions, we study the pressure-induced insulator-to-metal (IM) transi-

tion in LaMnO3 [Loa et al. 2001] and compare the experimental results with the

LDA+DMFT calculations. The chapter is outlined as follows: In section 4.1 we

explain in detail the experiment on the pressure-induced metal-insulator transition.

The LDA+DMFT calculations are presented in section 4.2. By comparing the LDA

and LDA+DMFT results with experiment, we show that the realistic crystal field

splitting is not enough to produce an insulating ground state at ambient conditions.

We conclude that both the Coulomb interaction and the Jahn-Teller coupling are

necessary for understanding the electronic behavior of LaMnO3 and, contrary to

earlier works [Loa et al. 2001, Banach & Temmerman 2004, Zenia et al. 2005], the

pressure-induced insulator-to-metal transition is not of Mott-Hubbard type. Sec-

tion 4.3 is devoted to the DMFT model calculations. The explicit inclusion of the

Jahn-Teller phonons allows us to study the dynamic Jahn-Teller effect and thus

the structural (orbital order-disorder) transition from dynamic to static Jahn-Teller

distortion in LaMnO3.

4.1 Experiment

At ambient conditions LaMnO3 is an insulator with 3 t2g electrons and 1 eg electron.

Above 1000 K, it has a rhombohedral structure. At the cooperative Jahn-Teller tem-

perature TOO = 740 K, it undergoes a structural transition from a weakly distorted

orthorhombic phase with the GdFeO3-type distortion (rotation of MnO6 octahedra)

to a strongly distorted orthorhombic structure with an additional static coopera-

tive Jahn-Teller distortion. The structural transition is accompanied by an orbital

ordering transition. Below the Néel temperature TN = 140 K, LaMnO3 has an A-

type antiferromagnetic spin structure. These complicated behaviors (see the phase

diagram Fig. 4.1) are due to the interplay of spin, orbital and lattice degrees of
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4 Pressure-induced metal-insulator transition

transition decreases appreciably, and for x>0.14 the transition temperatures agree well
with published data for a structural transition between orthorhombic O* and rhombohe-
dral R phases.2,6 This gives us a basis for identifying the observed transitions as
O*→R right down to x50. In the region of magnetic ordering, for x50.175 and 0.2,
these transitions also manifest themselves in the form of a sharp change in the suscepti-
bility ~Fig. 1! and magnetization. Therefore two high-temperature structural phase tran-
sitions O8→O* and O*→R , corresponding to the lines Ts8(x) and Ts(x) on the phase
diagram in Fig. 4, occur in La12xSrxMnO3. The structures of the rhombohedral R and
orthorhombic O* phases are determined by distortions of the initial perovskite cubic
structure which are associated with a rotation of the oxygen octahedra around axes of the
type @111# and @110#, respectively, while the structure of the orthorhombic phase O8 is
associated with the additional distortion of the O* phase in the presence of static coop-
erative Jahn–Teller ordering of the deformed oxygen octahedra.

Let us now turn to the results of submillimeter measurements of the permittivity
e8(T) and dynamic conductivity s8(T), whose temperature dependences for x50.125
are presented in Fig. 3 for the frequency n513.3 cm21. The curves 1 and 2 refer to
different polarizations of the radiation, which correspond to minimum and maximum
transmission. This is evidently associated with the anisotropy of the crystal. It is evident
see that appreciable anomalies are observed in the curves s8(T) and e8(T). They corre-
spond well with the features appearing in the curves of the static conductivity sdc(T),
magnetic susceptibility xac(T), and magnetization M (H) ~Fig. 3c and 3d! as a result of

FIG. 4. Structural and magnetic T –x phase diagram of La12xSrxMnO3. R — rhombohedral phase; O* —
weakly distorted orthorhombic phase; O8 — strongly distorted ~Jahn–Teller! orthorhombic phase; P —
polaron-ordering phase; Para — paramagnetic state; F — ferromagnetic state; CAF — noncollinear phase; TC

and TN — Curie and Néel temperatures; T s and Ts8 — temperatures of the transitions O*→R and O8→O*,
respectively; and, Tp — temperature of the transition to the polaron-ordering phase.

361JETP Lett., Vol. 68, No. 4, 25 Aug. 1998 Mukhin et al.

Figure 4.1: Structural and magnetic T-x phase diagram of La1−xMnxO3. R — rhom-

bohedral phase; O? — weakly distorted orthorhombic phase; O ′ — strongly distorted

(Jahn-Teller) orthorhombic phase; P — polaron-ordering phase; Para — paramagnetic

phase; F — ferromagnetic phase; CAF — noncollinear phase; TC and TN — Curie tem-

perature and Néel temperature; Ts and T ′s — temperature of the transitions O? → R and

O′ → O?, respectively; and Tp — temperature of the transition to the polaron-ordering

phase. Figure taken from Ref. [Mukhin et al. 1998].

freedom.

When an external pressure is applied, an insulator-to-metal transition is observed

at 32 GPa [Loa et al. 2001]. While the strength of the Coulomb interaction is not

much affected by pressure, the lattice distortion which is defined by the displace-

ments of the oxygen atoms from the equilibrium positions is significantly reduced

under pressure. This reduction of the lattice distortion also changes the angle of

the Mn-O-Mn bond and thus enhances the effective bandwidth of the eg electrons.

Both effects may lead to an insulator-to-metal transition.
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4.1 Experiment

An important question is whether the Jahn-Teller distortion is completely sup-

pressed before the insulator-to-metal (IM) transition occurs. If the transition occurs

at a higher pressure so that the Jahn-Teller distortion is completely suppressed at

the transition point, namely, PIM > PJT , then the Coulomb interaction alone can

already explain the insulating ground state and the Jahn-Teller coupling is not of

particular importance for determining the electronic properties of LaMnO3. But if,

on the contrary, the transition happens at a lower pressure, namely, PIM < PJT ,

then the Jahn-Teller distortion is indispensable for making LaMnO3 an insulator.

The pressure-induced insulator-to-metal transition thus provides a good example

to study the relative importance of the Coulomb interaction and the Jahn-Teller

coupling in manganites.

The experimental study of the pressure-induced insulator-to-metal transition

[Loa et al. 2001] was carried out at a temperature of 300 K. By applying a pressure

up to 40 GPa, the lattice structure of LaMnO3 was studied by x-ray powder diffrac-

tion and the lattice parameters and atomic positions were determined. Fig. 4.2(a)

and Fig. 4.2(b) show that with increasing pressure, the lattice parameters and cor-

respondingly the volume of the unit-cell and the MnO6 octahedra are considerably

reduced. In Fig. 4.2(c), the atomic coordinates of the La ions change continuously

up to 12 GPa. Then the intensity of the (111) reflection becomes zero (see the inset

of Fig. 4.2(c)), indicating that the position of the La ion remains located at x=0

(and x=1/2).

Fig. 4.2(d) shows the lengths of the three different Mn-O bonds as a function

of pressure. This allows for the determination of the amplitude of the Jahn-Teller

distortion. The data was measured only up to 11 GPa. In [Loa et al. 2001], they

were fit linearly versus pressure and then found to become equal at about 18 GPa.

So the static Jahn-Teller distortion was expected to be completely suppressed above

18 GPa.

On the other hand, the insulator-to-metal transition occurs at a much higher

pressure. Below 32 GPa, the optical reflectivity spectra has a broad peak around 2

eV [Fig. 4.3(a)] corresponding to an optical transition and a related 1 eV energy gap,

which agrees with other optical experiments [Jung et al. 1998, Takenaka et al. 1999]

and reflects the insulating nature of LaMnO3 at ambient pressure. The dramatic

change of the shape of the spectra at higher pressure indicates an insulator-to-

metal transition at 32 GPa. This is further confirmed by the electrical resistivity

measurements. In Fig. 4.3(b), the resistance shows a sharp drop and a change in

sign of dR(T )/dT at 32 GPa.

Since for a linear extrapolation the lattice distortion exists only below 18 GPa,

an intermediate insulating phase which is dominated by the Coulomb interaction
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4 Pressure-induced metal-insulator transition
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a micro-optical setup and sample loading procedures (KCl
pressure medium) described in Ref. [9]. All of the above
experiments were performed at T � 300 K. Four-probe
dc resistance measurements were carried out with
5 7 mm thick Pt foil electrodes as a function of tempera-
ture and pressure [10]. The sample/metal-gasket cavity
was coated with an insulating mixture of Al2O3�NaCl
combined with epoxy. No pressure-transmitting medium
was used. In all experiments pressures were measured
with the ruby luminescence method [11].

Typical diffraction patterns of LaMnO3 are shown in
Fig. 1(a) for the pressure range 0–40 GPa. Up to 11 GPa
the diffraction patterns were suitable for Rietveld refine-
ments [12] yielding the lattice parameters and the atomic
positions. Figure 1(b) shows the result of a refinement for
a pressure of 5.9 GPa. Above 11 GPa, lattice parameters
were determined from full-profile fits with the atomic po-
sitions fixed to the 11-GPa values (space group Pnma).

Figure 2(a) illustrates the pressure dependence of the
lattice parameters. The b-axis data are normalized by a
factor of 2

21�2 corresponding to a pseudocubic represen-
tation of the lattice. Up to 15–20 GPa, the compression is
anisotropic with the soft direction along the a axis. Its ini-
tial compressibility is �4 times larger than those of the b

and c axes. The compressibilities along the c and a direc-
tions change markedly at �7 and �18 GPa, respectively.
LaMnO3 remains orthorhombic to at least 40 GPa.

From the lattice parameter data we obtain the pressure
dependence of the unit-cell volume shown in Fig. 2(b).
The V �P� data are well described by the Murnaghan equa-
tion [13] which yields the bulk modulus B0 and its pres-
sure derivative B0 at zero pressure. The large value of
B0

� 8.5 6 0.4 (compared to typical values of B0 � 4 6

for crystals with nearly isotropic compression) reflects the
pronounced anisotropic compressibility.

FIG. 1. (a) X-ray powder diffraction patterns of LaMnO3

at various pressures (T � 298 K). (b) Diffraction pattern at
5.9 GPa and difference between the observed and calculated
profile. Marks show the calculated peak positions. The reflec-
tion marked “N2” is due to solid nitrogen.

Figure 2(c) shows the free positional parameters x and
z of the La ions as a function of pressure. The x parame-
ter decreases continuously and becomes zero near 12 GPa.
This is also evidenced directly by the decreasing intensity
of the (111) reflection [cf. Fig. 1 and inset of Fig. 2(c)].
The fact that this reflection does not reappear at higher
pressures implies that the La ions remain located at x � 0

(and x � 1�2) at pressures above 12 GPa. The structural
data further indicate that the relative compression of the
distorted MnO6 octahedra is larger than that of the unit
cell [inset in Fig. 2(b)]. This implies that the octahedral
tilting decreases with increasing pressure, consistent with
the shift of the La ion. Mizokawa et al. concluded that
at ambient pressure the shift of the La ion, driven by the
GdFeO3-type distortion, is essential to stabilize the or-
bital ordering [14]. The observed reversal of this shift
thus suggests a destabilization of the orbital order at high
pressures.

The three Mn-O distances of the distorted MnO6 octahe-
dra decrease under pressure [Fig. 2(d)]. This effect is most

FIG. 2. (a) Lattice parameters of LaMnO3 at ambient tempera-
ture as a function of pressure. There are marked changes of
the a and c axis compressibility at 7 and 18 GPa, respectively.
The inset shows the crystal structure of LaMnO3 at ambient
conditions (space group Pnma). (b) Unit-cell volume versus
pressure. The inset depicts the volume of the MnO6 octahe-
dra up to 10 GPa. (c) Atomic coordinates of La as a function
of pressure (yLa � 1�4). The inset shows the evolution of the
intensity of the (111) reflection normalized to the (101) peak.
(d) Mn-O distances of the distorted MnO6 octahedra as a func-
tion of pressure.

125501-2 125501-2

Figure 4.2: (a) Lattice parameters of LaMnO3 at ambient temperature as a function of

pressure. The crystal structure of LaMnO3 is also shown in the inset. (b) Volume of the

unit cell and the MnO6 octahedra versus pressure. (c) Atomic coordinates of La ions as a

function of pressure (yLa = 1/4). (d) Lengths of the Mn-O bonds versus pressure. Figure

taken from Ref. [Loa et al. 2001]

alone was suggested in [Loa et al. 2001]. It was argued that the insulator-to-metal

transition at 32 GPa must be purely a result of the increasing electronic bandwidth

under pressure and thus a (bandwidth-control) Mott transition. This also means

that even if the Jahn-Teller coupling may somehow enhance the insulating behav-

ior, it does not play an important role in determining the electronic properties of

LaMnO3.

This is puzzling since it seems to contradict the tendency to attribute a major
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pronounced for the Mn-O2 (a) distance which relates to the
large a axis compressibility at low pressures. Extrapola-
tion of the data suggests all Mn-O bond lengths become
nearly equal around 18 GPa, which coincides with the oc-
currence of the a axis compression anomaly. This equal-
ization of the Mn-O distances means that the cooperative

Jahn-Teller effect is reduced with increasing pressure, a
process which appears to be completed near 18 GPa.

Raman spectroscopy (Fig. 3) shows that the structural
changes are more complex than indicated by the x-ray data
which reflect the average long-range order. The B2g Ra-
man peak (1) at 610 cm21 (in-phase O2 stretching mode
[15]) shifts towards higher energy and loses intensity
with increasing pressure. From the extrapolation of the
intensity-versus-pressure data, it is expected to vanish
near 18 GPa. A new peak (2) starts to appear near 7 GPa,
approximately 45 cm21 higher in energy than peak (1).
The intensity redistribution from the O2 stretching mode
(1) to the new higher-energy peak (2) shows that a sluggish
transition occurs that is not evident from the x-ray data.

The pressure range 7–18 GPa, in which the Raman
intensity redistribution takes place, coincides with that
marked by the anomalies of the c and a lattice parame-
ters. Together with the absence of distinct changes of
atomic positions around 7 GPa, these findings suggest the
following scenario: After compression of the sample up
to 7 GPa, domains start to form. In these domains the
MnO6 octahedra adopt a less distorted, contracted shape
which results in the new higher-energy Raman peak. The
lattice parameters of the two phases are very similar since
no peak splitting is observed in the diffraction experiment.
This is easily understood as the octahedral contraction can
be compensated (with regard to the lattice parameters) by
a change of the octahedral tilting.

The combined x-ray and Raman data show that the coop-
erative Jahn-Teller effect in LaMnO3 is reduced by appli-
cation of hydrostatic pressure. There is a strong indication

FIG. 3. (a) Raman spectra of LaMnO3 at 300 K in the pressure
range 0–16 GPa. (b) Intensities versus pressure of the B2g mode
(1) at 610 cm21 that was assigned to the in-phase O2 stretching
vibration and of the peak (2) appearing above 7 GPa.

that the Jahn-Teller distortion is completely suppressed at
18 GPa.

A pressure-induced insulator–metal transition takes
place at pressures much higher than required to suppress
the Jahn-Teller effect. It occurs at �32 GPa as evidenced
by optical reflectivity and electrical resistance measure-
ments (Fig. 4). The broad spectral feature around 2 eV
[Fig. 4(a)] corresponds to an optical transition and a re-
lated gap near 1 eV, consistent with the insulating nature of
LaMnO3 at ambient pressure. Up to 18 GPa — i.e., in the
pressure range where the suppression of the Jahn-Teller
distortion occurs —only small changes of the optical
response are observed. Above 30 GPa, the near-infrared
reflectivity increases strongly [inset of Fig. 4(a)] indicat-
ing an insulator-to-metal transition in agreement with the
electrical resistance experiments. At 32 GPa these show
a change in sign of the resistance derivative, dR�dT ,
namely from semiconductor to metal behavior [Fig. 4(b)].
In addition, a sharp drop of the ambient-temperature
resistance occurs at the same pressure [inset of Fig. 4(b)].
The system retains a rather high resistance, i.e., it is a
“poor” metal.

Our results suggest the existence of three distinct
regimes: (i) an insulating one with JT distortion and
orbital ordering [,18 GPa], (ii) an intermediate one with
suppressed JT distortion and no orbital ordering, but still
insulating [18–32 GPa], and (iii) a metallic phase without
JT effect [.32 GPa]. For a certain range of pressures
undoped LaMnO3 thus exists in an insulating state which
is not caused by the JT effect. This supports the view that
LaMnO3 basically is a Mott (or charge-transfer) insulator.

The observed decrease of the Mn-O distances under
pressure and the decreasing octahedral tilting both enhance

FIG. 4. (a) Optical reflectivity spectra of LaMnO3 at T �

300 K as a function of pressure. Rd denotes the absolute re-
flectivity of the interface between sample and diamond of the
pressure-generating DAC. (Note the logarithmic scale.) The
inset shows the pressure dependence of the near-infrared reflec-
tivity at 0.6 eV. (b) Temperature dependence of the resistance
log

10
�R�V� for selected pressures up to 33 GPa. The inset de-

picts the pressure dependence of the resistance at T � 300 K.
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Figure 4.3: (a) Optical reflectivity spectra of LaMnO3 at T = 300 K as a function of

pressure. (b) Temperature dependence of the resistance at different pressures. The inset

shows the pressure dependence of the resistance at T = 300K. The arrow marks the

insulator-to-metal transition at 32 GPa. Figure taken from Ref. [Loa et al. 2001].

role to the Jahn-Teller coupling in the physics of manganites [Millis et al. 1995]. For

this, we note that the above argument is based on the single fact that the lengths of

the three Mn-O bonds would become equal to each other when extrapolated to the

pressure 18 GPa. In fact, there is no guarantee that the bond lengths should behave

linearly with pressure. This leaves some ambiguity and should be further discussed.

4.2 LDA+DMFT investigations

In this section, we study the pressure-induced insulator-to-metal transition using

the LDA+DMFT approach. We will see from the LDA band structure that the

realistic crystal field splitting is not enough to produce an insulating ground state

in LaMnO3 at ambient conditions. The on-site Coulomb interaction is then taken

into account and studied by DMFT. The results agree well with experimental ob-

servations and demonstrate the indispensable role of both the Coulomb interac-

tion and the Jahn-Teller coupling. The work of this section has been published in

[Yamasaki et al. 2006].
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4 Pressure-induced metal-insulator transition

4.2.1 Band structures

The LDA band structure calculation was performed based on the orthorhombic

crystal structure of LaMnO3 shown in Fig. 4.4. The O6 octahedra are elongated in

the y direction (nearly parallel to b-a) in subcells 1 and 3, and in the x direction

(nearly parallel to b+a) in subcells 2 and 4. Both the GdFeO3-type distortion and

the Jahn-Teller distortion are included in the calculation and the lattice parameters

are taken from the experiment in Ref. [Loa et al. 2001]. The Jahn-Teller distortion

can be estimated from Fig. 4.2(d). It decreases linearly from 11% at 0 GPa to 4%

at 11 GPa. The GdFeO3-type distortion tilts the corner sharing octahedra around

the b axis and rotate them around the c axis, both in alternating directions. When

the pressure increases from 0 to 11 GPa, the tilt is reduced from 12◦ to 8◦ and the

rotation from 7◦ to 5◦.

Fig. 4.5 shows the paramagnetic LDA bands at normal pressure for both the or-

thorhombic structure (top right) and the hypothetical cubic structure with the same

volume (top left). Since there are 4 subcells in each unit cell for the orthorhom-

bic structure, the total number of the bands is then 4 times larger compared to

that for the cubic structure. The dashed bands were obtained with a large basis

set of Nth-order muffin tin orbitals (NMTOs) [Andersen & Saha-Dasgupta 2000,

Pavarini et al. 2004, Pavarini et al. 2005, Zurek et al. 2005]. We see 3(×4) Mn t2g
and 2(×4) Mn eg bands. Near the top of Fig. 4.5 — and continuing above it — is

Figure 4.4: LaMnO3 orthorhombic translational cell (Pbnm) and LDA-NMTO Mn eg
crystal-field orbital |1〉 (left) and |2〉 (right) of respectively lowest and highest energy. The

orbitals have been placed only in subcells 3 and 2; those in subcells 1 and 4 may be obtained

by the LaO mirror plane perpendicular to the c (=z) axis. Since they have antibonding

O 2p tails, orbitals |1〉 and |2〉 are directed respectively along and perpendicular to the

longest Mn-O bond. Red/blue indicates a positive/negative sign.

64



4.2 LDA+DMFT investigations

of Nth-order muffin tin orbitals (NMTOs) [10,11]. Within
the frame of the figure, we see the 3��4� Mn t2g and the

2��4�Mn eg bands, while the O 2p bands are below. As a

check, we also carried out spin-polarized calculations for
ferro- and antiferromagnetic A-type orders and found full
agreement with previous work [12]. Near the top of
Fig. 2—and continuing above it—is the La 5d band which
is pushed 2 eV up by pd� hybridization with oxygen when
going from the cubic to the orthorhombic structure. This
hybridization is a reason for the GdFeO3-type distortion
[11], but since it only involves O p orbitals perpendicular

to the one which hybridizes with Mn eg (Fig. 1), the La 5d

and Mn eg bands hardly hybridize. Finally, the narrow

band crossing the cubic Mn eg band is La 4f.

The NMTO method can be used to generate minimal
basis sets [10,11], such as the Mn eg basis whose orbitals

are shown in Fig. 1. This basis gives rise to the red solid
bands in the topmost panel of Fig. 2, which are seen to
follow the blue dashed bands exactly, except where the
latter have avoided crossings with La bands. When their
energy mesh is converged, the symmetrically orthonormal-
ized, minimal NMTO set is a set of Wannier functions. The
eg NMTOs are localized by the requirement that a Mn eg
orbital has no eg character on neighboring Mn atoms, and

this confines the NMTO-Wannier functions to being essen-
tially as localized as those in [13].

Taking the Coulomb repulsion and Hund’s exchange
into account, three electrons localize in the t2g orbitals

which we describe in the following by a classical spin S.
These t2g spins, which we assume to have random orienta-

tions at room temperature, couple to the eg electrons with

strength 2J S � 2:7 eV, as estimated by the splitting of the

e"g and e#g bands in our ferromagnetic NMTO calculation
(not shown). This results in the following low-energy
Hamiltonian for the two eg bands:

Ĥ�
X

ijmn��0
him;jnĉ

y
im�u

ij
��0 ĉjn�0�J S

X

im

�n̂im"� n̂im#�

�U
X

im

n̂im"n̂im#�
X

i��0
�U0����0J�n̂i1�n̂i2�0 ; (1)

where him;jn is the LDA Hamiltonian in the representation

of the two (m � 1; 2) eg NMTO-Wannier orbitals per site

(Fig. 1 and two top rows of Fig. 2); uij
��0 accounts for the

rotation of the spin quantization axis (parallel to the t2g
spin) from Mn sites j to i. The second line describes the
Coulomb interactions between eg electrons in the same (U)

and in different orbitals (U0); J is the eg-eg Hund’s rule

exchange. We take U � 5 eV and J � 0:75 eV from the
literature [3]; by symmetry, U0 � U� 2J. These values
are reasonable, also in comparison with those used for
other transition-metal oxides. Whereas a larger U is ap-
propriate when all five d degrees of freedom are treated
[12], the smaller value used for our eg Hamiltonian takes

the screening by the t2g electrons into account.

We first solve (1) by DMFT [14] using quantum
Monte Carlo (QMC) simulations at room temperature.
Previous calculations for LaMnO3 with electronic correla-
tions, but simplified hopping integrals, include Ref. [15].
We neglected the (orbital) off-diagonal elements of the on-
site Green function, forcing the DMFT density to have the
same symmetry as the LDA crystal field (Fig. 1), a good
approximation for eg systems.

The spectral densities calculated using the observed
crystal structures at 0 and 11 GPa [5] are shown at the
bottom of Fig. 2 (green and blue, respectively). At 0 GPa,
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FIG. 2 (color). Top: paramagnetic LDA band structure for
orthorhombic (right) and hypothetical cubic (left) LaMnO3 at
0 GPa plotted along the high-symmetry lines in the kx � ky
plane. Energies are in eV, the k unit is � [11], and the k points
marked are �MRX� in the cubic, and �YTZ� in the orthorhom-
bic BZ. The latter is folded in from the former and has the
following smallest inequivalent reciprocal-lattice vectors: Q �
000, 110, 111, and 001. Dashed blue bands: large NMTO basis
set; red bands: Mn eg NMTO basis set employed in Eq. (1). The

N� 1 support energies Ei are shown at the right-hand sides. The
zero of energy corresponds to configuration t4

2g. Second row: 0

and 11 GPa orthorhombic (0 GPa cubic) eg bands folded out (in)

to the �000; 110�-BZ. The dimensionless band-shape parameter,
X, is the LDA crystal-field splitting in units of the effective
hopping integral t � jtdd�j 	W=6, both obtained from the
NMTO Mn eg Wannier functions. Third row: as second row,

but obtained by spin-polarized LDA�U for random spin ori-
entations (room temperature). Bands are labeled by their main
character. The zero of energy is the Fermi level. Bottom: spectra
calculated by LDA� DMFT. The full and dashed lines give the
projections onto orbitals j1i and j2i, respectively.
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Figure 4.5: Top: Paramagnetic LDA band structure for orthorhombic (right) and hypo-

thetical cubic (left) LaMnO3 at 0 GPa plotted along the high-symmetry lines in the kx=ky
plane. Energies are in eV, the k-unit is π, and the k-points marked are ΓMRXΓ in the

cubic, and ΓYTZΓ in the orthorhombic Brillouin zone (BZ). The latter is folded in from

the former and has the following smallest inequivalent reciprocal-lattice vectors: Q = 000,

110, 111, and 001. Dashed blue bands: large NMTO basis set; red bands: Mn eg NMTO

basis set employed in the low-energy Hamiltonian used later in LDA+DMFT calculation.

The N+1 support energies Ei are shown at the right-hand sides. The zero of energy corre-

sponds to configuration t42g. Bottom: 0 and 11 GPa orthorhombic (0 GPa cubic) eg bands

folded out (in) to the (000, 110)-BZ. The dimensionless band-shape parameter, X, is the

LDA crystal-field splitting in units of the effective hopping integral t≡ |tddσ| ∼W/6, both

obtained from the NMTO Mn eg Wannier functions.

the La 5d band which is pushed 2 eV up by pdσ hybridization with oxygen when

going from the cubic to the orthorhombic structure. The narrow band crossing the

cubic Mn eg band is La 4f , and the O 2p bands are below and not shown.

The minimum basis set, here the Mn eg basis, generated by the NMTO down-

folding gives rise to the red solid bands in Fig. 4.5. The corresponding Wannier

functions are essentially localized so that a Mn eg orbital has no eg character on

neighboring Mn atoms.

The bottom of Fig. 4.5 shows the eg bands in a reduced Brillouin zone. For the

realistic orthorhombic structure, we see clearly the crystal field splitting between

two eg orbitals. The LDA calculations produce a crystal field splitting X = ∆JT/t
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4 Pressure-induced metal-insulator transition

of 1.85 at 0 GPa and 0.94 at 11 GPa. Yet, even though the crystal field splitting

is present, the two eg orbitals still overlap with each other and we get a metallic

behavior, contrary to the experimental fact that LaMnO3 is an insulator below 32

GPa.

This demonstrates that the Jahn-Teller coupling alone cannot explain the in-

sulating ground state found in LaMnO3 at ambient conditions. The deviation of

LDA calculations from experiments is a general phenomenon since by neglecting the

on-site Coulomb interaction, the LDA band structure calculation fails for strongly

correlated materials such as transition metals, transition metal oxides, and f-metals.

In these materials, the localized d- and f -orbitals are extensively overlapping on the

same site and hence the on-site Coulomb interaction is of prime importance. Below,

we will take into account the Coulomb interaction between the eg electrons and use

the LDA+DMFT approach to investigate its effect in LaMnO3.

4.2.2 Electronic properties

Including the Hund’s coupling between the eg and t2g spins and the Coulomb inter-

action between the eg orbitals, the low-energy Hamiltonian reads

H = −
∑

ij;µνσ

tijµνc
†
iµσcjνσ − 2J

∑

i;µ

siµ · Si

+U
∑

i;µ

niµ↑niµ↓ +
∑

i;σσ̃

(V − δσσ̃F )ni1σni2σ̃ (4.1)

where tijµν is the LDA Hamiltonian in the representation of the two (µ=1, 2) eg
NMTO-Wannier orbitals per site (see Fig. 4.4 and Fig. 4.5). The second line de-

scribes the intra- and inter-orbital Coulomb interactions between eg electrons, and F

is the eg-eg exchange interaction. We have V = U − 2F due to the cubic symmetry.

In our work, the Hund’s coupling 2J |S| = 2.7 eV is estimated by the splitting of the

e↑g and e↓g bands in a ferromagnetic NMTO calculation. The Coulomb interaction

U = 5 eV is estimated from Ref. [Park et al. 1996]. We take F = 0.75 eV so that

V = 3.5 eV which is slightly larger than our estimates in section 2.4. Since at the

moment we cannot say which estimate is better, we will take the larger value and

focus mainly on the physics of the insulating behavior of LaMnO3. We will see that

our main conclusions do not change with a slightly smaller Coulomb interaction.

In the DMFT calculations, the orbital off-diagonal elements of the on-site Green’s

function are neglected for simplicity. The DMFT density for eg orbitals is forced to

have to same symmetry as the LDA crystal field with a rotation of the local basis

from subcell to subcell (see Fig. 4.4). We believe that this is a good approximation

for eg systems.
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4.2 LDA+DMFT investigations

of Nth-order muffin tin orbitals (NMTOs) [10,11]. Within
the frame of the figure, we see the 3��4� Mn t2g and the

2��4�Mn eg bands, while the O 2p bands are below. As a

check, we also carried out spin-polarized calculations for
ferro- and antiferromagnetic A-type orders and found full
agreement with previous work [12]. Near the top of
Fig. 2—and continuing above it—is the La 5d band which
is pushed 2 eV up by pd� hybridization with oxygen when
going from the cubic to the orthorhombic structure. This
hybridization is a reason for the GdFeO3-type distortion
[11], but since it only involves O p orbitals perpendicular

to the one which hybridizes with Mn eg (Fig. 1), the La 5d

and Mn eg bands hardly hybridize. Finally, the narrow

band crossing the cubic Mn eg band is La 4f.

The NMTO method can be used to generate minimal
basis sets [10,11], such as the Mn eg basis whose orbitals

are shown in Fig. 1. This basis gives rise to the red solid
bands in the topmost panel of Fig. 2, which are seen to
follow the blue dashed bands exactly, except where the
latter have avoided crossings with La bands. When their
energy mesh is converged, the symmetrically orthonormal-
ized, minimal NMTO set is a set of Wannier functions. The
eg NMTOs are localized by the requirement that a Mn eg
orbital has no eg character on neighboring Mn atoms, and

this confines the NMTO-Wannier functions to being essen-
tially as localized as those in [13].

Taking the Coulomb repulsion and Hund’s exchange
into account, three electrons localize in the t2g orbitals

which we describe in the following by a classical spin S.
These t2g spins, which we assume to have random orienta-

tions at room temperature, couple to the eg electrons with

strength 2J S � 2:7 eV, as estimated by the splitting of the

e"g and e#g bands in our ferromagnetic NMTO calculation
(not shown). This results in the following low-energy
Hamiltonian for the two eg bands:

Ĥ�
X

ijmn��0
him;jnĉ

y
im�u

ij
��0 ĉjn�0�J S

X

im

�n̂im"� n̂im#�

�U
X

im

n̂im"n̂im#�
X

i��0
�U0����0J�n̂i1�n̂i2�0 ; (1)

where him;jn is the LDA Hamiltonian in the representation

of the two (m � 1; 2) eg NMTO-Wannier orbitals per site

(Fig. 1 and two top rows of Fig. 2); uij
��0 accounts for the

rotation of the spin quantization axis (parallel to the t2g
spin) from Mn sites j to i. The second line describes the
Coulomb interactions between eg electrons in the same (U)

and in different orbitals (U0); J is the eg-eg Hund’s rule

exchange. We take U � 5 eV and J � 0:75 eV from the
literature [3]; by symmetry, U0 � U� 2J. These values
are reasonable, also in comparison with those used for
other transition-metal oxides. Whereas a larger U is ap-
propriate when all five d degrees of freedom are treated
[12], the smaller value used for our eg Hamiltonian takes

the screening by the t2g electrons into account.

We first solve (1) by DMFT [14] using quantum
Monte Carlo (QMC) simulations at room temperature.
Previous calculations for LaMnO3 with electronic correla-
tions, but simplified hopping integrals, include Ref. [15].
We neglected the (orbital) off-diagonal elements of the on-
site Green function, forcing the DMFT density to have the
same symmetry as the LDA crystal field (Fig. 1), a good
approximation for eg systems.

The spectral densities calculated using the observed
crystal structures at 0 and 11 GPa [5] are shown at the
bottom of Fig. 2 (green and blue, respectively). At 0 GPa,
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FIG. 2 (color). Top: paramagnetic LDA band structure for
orthorhombic (right) and hypothetical cubic (left) LaMnO3 at
0 GPa plotted along the high-symmetry lines in the kx � ky
plane. Energies are in eV, the k unit is � [11], and the k points
marked are �MRX� in the cubic, and �YTZ� in the orthorhom-
bic BZ. The latter is folded in from the former and has the
following smallest inequivalent reciprocal-lattice vectors: Q �
000, 110, 111, and 001. Dashed blue bands: large NMTO basis
set; red bands: Mn eg NMTO basis set employed in Eq. (1). The

N� 1 support energies Ei are shown at the right-hand sides. The
zero of energy corresponds to configuration t4

2g. Second row: 0

and 11 GPa orthorhombic (0 GPa cubic) eg bands folded out (in)

to the �000; 110�-BZ. The dimensionless band-shape parameter,
X, is the LDA crystal-field splitting in units of the effective
hopping integral t � jtdd�j 	W=6, both obtained from the
NMTO Mn eg Wannier functions. Third row: as second row,

but obtained by spin-polarized LDA�U for random spin ori-
entations (room temperature). Bands are labeled by their main
character. The zero of energy is the Fermi level. Bottom: spectra
calculated by LDA� DMFT. The full and dashed lines give the
projections onto orbitals j1i and j2i, respectively.
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Figure 4.6: Top: From left to right: 0 GPa cubic, 11 and 0 GPa orthorhombic eg bands,

obtained by spin-polarized LDA+U for random spin orientations (room temperature),

folded out (in) to the (000, 110)-BZ. The dimensionless band-shape parameter, X, is the

LDA crystal-field splitting in units of the effective hopping integral t≡ |tddσ| ∼W/6, both

obtained from the NMTO Mn eg Wannier functions. Bands are labelled by their main char-

acter. The zero of energy is the Fermi level. Bottom: Spectra calculated by LDA+DMFT.

The full and dashed lines give the projections onto orbitals |1〉 and |2〉, respectively.

Fig. 4.6 presents the LDA+U (top panel) and LDA+DMFT (bottom panel) results

for the hypothetical cubic structure and the orthorhombic structure at 0 and 11 GPa.

For the cubic structure without a crystal field splitting, even the strong Coulomb in-

teraction cannot make the system insulating and the LDA+DMFT spectrum reveals

a metallic feature with a sharp quasiparticle peak. It is only for the orthorhombic

structure with a realistic crystal field splitting that we obtain an energy gap which is

about 2 eV at 0 GPa and reduced to 1 eV at 11 GPa. The 2 eV energy gap at 0 GPa is

slightly larger than the experimental result [Jung et al. 1998, Takenaka et al. 1999],

implying a slightly larger Coulomb interaction used in the calculations. Also marked

in the figure are the spin and orbital contributions to the spectra, illustrating the

split spin states due to the Hund’s coupling and the split orbitals due to the lattice

distortion.

Comparing the LDA and LDA+DMFT results, we conclude that neither the

Coulomb interaction nor the Jahn-Teller coupling is strong enough to give rise to

the observed insulating behavior of LaMnO3 at ambient conditions. The electronic

properties of manganites can only be understood from their combination of both.
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4 Pressure-induced metal-insulator transition

To study the pressure-induced insulator-to-metal transition by LDA+DMFT, we

need the pressure dependence of the lattice parameters with which the realistic

crystal field splitting X and the eg bandwidth W can be calculated by LDA. In

Ref. [Loa et al. 2001], however, the lattice parameters were only measured below 11

GPa. As plotted in the left panel of Fig. 4.7, we have X = 1.85 and W = 3.0 eV at

0 GPa (square) and X = 0.94 and W = 3.6 eV at 11 GPa (triangle). To obtain the

high pressure results, we have to extrapolate these LDA results for the 0 and 11 GPa

orthorhombic structure. This can be done in two different ways. The first way is to

fix the dimensionless crystal field splitting X = 0.94 and rescale the bandwidth for

the 11 GPa orthorhombic structure. The pressure dependence of the bandwidth for

the cubic structure can be calculated by LDA (the red line). If we assume a similar

pressure dependence for the 11 GPa orthorhombic structure, we obtain the blue line

as shown in the left panel of Fig. 4.7. This gives a critical bandwidth Wc = 4 eV

at the transition point (32 GPa). In the second way, we connect the two points for

the 0 and 11 GPa orthorhombic structure (the dotted line). This may include some
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Figure 4.7: Left: LDA eg bandwidths, W∼6t, calculated as functions of compression,

V/V0. The top abscissa gives the experimental pressures, with 32 GPa marking the ob-

served IM transition [Loa et al. 2001]. Right: 300 K LDA+DMFT (solid lines) and

LDA+U (dashed lines) results calculated as functions of W. For insulators, we plot the

DOS gap (top scale) and for metals the quasiparticle weights (bottom scale). Full symbols

indicate actual experimental structures and connecting black dotted lines are extrapola-

tions. Each curve was calculated with fixed structure type (band shape): orthorhombic

0 GPa (green, X=1.85), orthorhombic 11 GPa (blue, X=0.94), cubic plus crystal-field

splitting (dark red, X=0.52), and cubic (red, X=0).
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4.2 LDA+DMFT investigations

effect of the reduction of the crystal field splitting X with increasing pressure. So

we find a sightly larger critical bandwidth Wc = 4.5 eV.

These results are supported by the linear extrapolation of the energy gap. The

right panel of Fig. 4.7 depicts the LDA+U (dashed lines) and LDA+DMFT (solid

lines) gap (or quasiparticle weight) as a function of the bandwidth. Let us focus on

the LDA+DMFT results since LDA+U systematically overestimates the insulating

gap. The DMFT calculations yield a 2 eV gap at 0 GPa (square) and a 1 eV gap at

11 GPa (triangle). The dotted line connects these two points and intersects with the

W−axis at about 4.6 eV. All together, the LDA and LDA+DMFT calculations give

a critical bandwidth Wc = 4.0− 4.6 eV at the insulator-to-metal transition point.

However, neither the cubic structure nor the 11 GPa orthorhombic structure al-

lows for such a critical value. For the cubic structure (red line), the system is

always metallic and has a finite quasiparticle weight in the whole calculated range

(W > 2 eV), whereas for the 11 GPa orthorhombic structure (X = 0.94, blue line),

the energy gap only goes away for W > 7 eV. In fact, it is only with a much re-

duced but still finite crystal field splitting X = 0.52 (dark red line) that we find a

comparable critical bandwidth Wc = 4.8 eV. This shows that the lattice distortion

is not fully suppressed at the insulator-to-metal transition point. There exists no

intermediate insulating phase as suggested in Ref. [Loa et al. 2001].

Note that the above results are not affected by a small reduction of the on-site

Coulomb interaction. The lattice distortion alone cannot give rise to an insulat-

ing behavior. We always need both the Coulomb interaction and the Jahn-Teller

coupling to explain the finite energy gap in LaMnO3 at ambient conditions. With

a smaller U , an even larger crystal field splitting is required to account for the

insulator-to-metal transition at 32 GPa.

In conclusion, both the Coulomb interaction and the Jahn-Teller coupling play

very important and indispensable roles in determining the insulating nature of

LaMnO3 at ambient conditions. But neither is strong enough to make the sys-

tem insulating. Fig. 4.8 illustrates the roles of the Coulomb interaction, the Jahn-

Teller coupling, as well as the the Hund’s rule coupling, in LaMnO3. The different

spin and orbital components are first split by the Hund’s rule coupling and the

Jahn-Teller distortion. However, the splitting is not strong enough to make the

system an insulator at 0 pressure. It is only with the on-site Coulomb interac-

tion that the splitting is further enhanced, giving rise to the insulating behavior

in LaMnO3. When an extenal pressure is applied, the lattice distortion is reduced

and the effective bandwidth is enhanced. Hence the split eg bands are pushed

together with increasing pressure until they overlap with each other and the sys-

tem becomes metallic. Therefore, there exists no intermediate insulating phase
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∆

∆
∆

J
V’

V’,

J

Figure 4.8: Diagram illustrating the roles of the Hund’s rule coupling J , the Coulomb

interaction V ′, and the Jahn-Teller splitting ∆ in determining the insulating nature of

LaMnO3.

dominated by the Coulomb interaction alone and the pressure-induced insulator-to-

metal transition is not of Mott-Hubbard type, in contrast to previous claims in Refs.

[Loa et al. 2001, Banach & Temmerman 2004, Zenia et al. 2005].

4.3 DMFT model calculations

In this section, we discuss the DMFT calculations for the realistic microscopic model

proposed in section 2.4. Including the Jahn-Teller coupling, the Hamiltonian reads

H = −
∑

〈〈ij〉〉;µνσ
tijµνc

†
iµσcjνσ − 2J

∑

i;µ

siµ · Si

+ U
∑

i;µ

niµ↑niµ↓ +
∑

i;σσ̃

(V − δσσ̃F )ni1σni2σ̃

− g
∑

i;µνσ

c†iµσ(Q2iτ
x +Q3iτ

z)µνciνσ +
∑

i;a

(
P 2
ai

2
+

Ω2

2
Q2
ai

)
, (4.2)

where tijµν is the hopping integral:

tx = t0

(
3
4
−
√

3
4

−
√

3
4

1
4

)
, ty = t0

(
3
4

√
3

4√
3

4
1
4

)
, tz = t0

(
0 0

0 1

)
. (4.3)

The parameters are again U = 5 eV, F = 0.75 eV, and, due to symmetry, V =

U−2F = 3.5 eV. The Hund’s coupling 2J |S| = 2.7 eV is estimated by the splitting of

the e↑g and e↓g bands in a ferromagnetic NMTO calculation as is in the LDA+DMFT

calculations. From Raman spectroscopy [Iliev et al. 1998], we obtain the phonon

frequency Ω = 0.07 eV. The Jahn-Teller coupling g is left for the moment as a free

parameter.

Unlike the LDA band structure calculations which take care of the effect of the

static lattice distortion, the explicit inclusion of the Jahn-Teller phonons in the
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4.3 DMFT model calculations

model Hamiltonian (4.2) allows us to treat the dynamic Jahn-Teller effect. In the

following, we first discuss the dynamic Jahn-Teller distortion which is related directly

to the Jahn-Teller coupling g. We show that although the model cannot predict

the realistic magnitude and direction of the lattice distortion, it still leads to a

proper description of the electronic behavior of manganites and surprisingly, it even

gives rise to the correct critical temperature for the structural (orbital disorder-

order) transition from dynamic to static Jahn-Teller effect in LaMnO3 (see the phase

diagram in Fig. 4.1).

4.3.1 Lattice distortion

To study the dynamic Jahn-Teller effect, we define the probability distribution func-

tion P (Q) for the lattice distortion

Q =
1

L

∑

i

√
Q2(τi)2 +Q3(τi)2, τi =

i− 1

L
β. (4.4)

Here we use dQ instead of QdQ as the phonon measure so that P (Q) represents the

probability of the dynamic Jahn-Teller distortion in the range [Q,Q + dQ], which

can be easily calculated in the DMFT (QMC) calculations.

Let me note that for some reason, the symmetry between the two Jahn-Teller

modes is broken in the QMC calculations once we introduce the Hubbard-Stratonovich

transformation for the Coulomb interactions. The distribution functions of the two

Jahn-Teller modes are thus very different. This phenomenon is stable with increas-

ing temperature or QMC sweeps. However, the symmetry is recovered when the

Coulomb interaction U or ∆τ goes to zero. In practice, we only need to do the

averaging with respect to the orbital indices for electronic quantities such as the lo-

cal Green’s function which we are most interested in. Moreover, the DMFT results

of the phonon distribution of Q2 and Q3 are not necessarily related to the realis-

tic lattice distortion due to the simplification of the model (see below). Therefore,

from now on, we will only focus on the probability distribution of the total lattice

distortion Q defined in Eq. (4.4).

Fig. 4.9 plots the distribution function P (Q) for g = 0.05 eV3/2 and β = 16. The

the lattice distortion are converted into units of Å by multiplying a factor of ~/
√
M

where M is the mass of oxygen atom. We see that P (Q) has one broad peak located

at around

Q̄ =

∫
dQQP (Q)∫
dQP (Q)

= 0.167 Å, (4.5)

which agree roughly to Q? = g/Ω2 ≈ 0.15 Å for a single-site model (see section 2.2).
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Figure 4.9: Probability distribution (in arbitrary unit) of the lattice distortion for the

Jahn-Teller coupling g = 0.05 eV3/2, the eg bandwidth W = 3.6 eV and the inverse tem-

perature β = 16. We have taken ∆τ = 0.2 and L = 80 in the DMFT calculations. The

lattice distortion in units of Å is obtained by multiplying a factor ~/
√
M , where M is the

mass of oxygen atom.

Such a lattice distortion of the order of 0.1 Å was once believed to be roughly in

agreement with experimental results in early theoretical studies [Millis et al. 1996c,

Satpathy et al. 1996a, Meskine & Satpathy 1999, Popovic & Satpathy 2000]. So a

coupling g = 0.05 eV3/2 has been generally used which leads to a Jahn-Teller energy

EJT =
g2

2Ω2
= 0.25 eV, (4.6)

consistent with some LDA calculations [Pickett&Singh 1996, Yin et al. 2006]. How-

ever, recent x-ray powder diffraction and neutron powder diffraction measurements

found a much larger distortion of about 0.4 Å [Chatterji et al. 2003]. The experi-

mental results are shown in Fig. 4.10. In our model, the larger distortion is only

possible if the Jahn-Teller phonons are much softer which, however, contradicts the

Raman experiment [Iliev et al. 1998], or the Jahn-Teller coupling is extraordinary

strong which leads to a larger Jahn-Teller energy in contradiction with the LDA cal-

culations. Therefore, we suggest that the simple description of the electron-phonon

interaction in our model cannot account for properly the realistic lattice distortions

and we have to take into account higher order effects such as the cooperative lattice

effect and the quadratic vibronic coupling to the electron degrees of freedom.
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Figure 4.10: Static Jahn-Teller distortions as a function of temperature obtained

from neutron powder diffraction measurements. Below the transition tempera-

ture 740 K, Q2 = 0.39 Å and Q3 = 0.12 Å. So the total distortion is Q =√
Q2

2 +Q2
3 = 0.4 Å, which is different from earlier estimates [Millis et al. 1996c,

Satpathy et al. 1996a, Meskine & Satpathy 1999, Popovic & Satpathy 2000]. Figure taken

from Ref. [Chatterji et al. 2003].

Quadratic vibronic coupling and cooperative effect The quadratic vibronic cou-

pling to the electron degrees of freedom contributes to the Hamiltonian an additional

term [Kanamori 1960, Popovic & Satpathy 2000]

Hquad = −G(Q2
3 −Q2

2)τ z + 2GQ2Q3τ
x, (4.7)

where G is a positive coupling constant and τ x, τ z are Pauli matrices describing the

two eg orbitals with |↑〉 = |3z2−r2〉 and |↓〉 = |x2−y2〉. For an isolated octahedron,

Hquad leads to the well-known ”Mexican-hat” type potential with three minima in

the Q2-Q3 plane along φ ≡ tan−1(Q2/Q3) = 0,±2π/3 directions [Kanamori 1960].

The cooperative effect, on the other hand, comes from the fact that the adjacent

MnO6 octahedra share a common oxygen atom in the LaMnO3 crystal. This adds

to the lattice Hamiltonian a term [Popovic & Satpathy 2000]

Hco = K ′
∑

〈ij〉α
Q̃iαQ̃jα, (4.8)
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4 Pressure-induced metal-insulator transition

where K ′ is a constant and 〈ij〉α denotes the adjacent octahedra along the direction

α = x, y, and z. Q̃iα are defined as

Q̃x =
Q3 +

√
3Q2

2
, Q̃y =

Q3 −
√

3Q2

2
, Q̃z = Q3. (4.9)

This cooperative effect could modify the location of the energy minima in the Q2-Q3

plane [Popovic & Satpathy 2000].

We will not go into the detail here, but note that a recent LDA+U calculation

[Yin et al. 2006] actually produced the correct experimental results, namely, the lat-

tice distortion Q = 0.4 Å and the ”orbital mixing angle” φ = tan−1(Q2/Q3) = ±109◦

which corresponds to the lattice distortion of the type (Q2,Q3;-Q2,Q3) for each

two neighboring MnO6 octahedra in the a-b plane of the orthorhombic LaMnO3

(see Fig. 4.4). The realistic ”orbital mixing angle” is determined by and reflects

the competition of the anharmonic terms of the potential energy and higher or-

der couplings which favors φ = 0,±2π/3 [Kanamori 1960], the tetragonal crystal

field splitting which favors φ = 0 [Yin et al. 2006], the superexchange interaction

which favors φ = π/2 (for the cubic structure) [Bala & Oleś 2000], as well as the

kinetic motion of the eg electrons and the cooperative Jahn-Teller contributions

[Popovic & Satpathy 2000].

To properly describe the lattice distortion in the model calculations, we need to

extend the model Hamiltonian (4.2) to include the cooperative effect and the higher

order anharmonic contributions, etc. This is beyond our single-impurity DMFT

(QMC) method and can only be treated in more sophisticated methods such as

the cluster extensions of DMFT [Hettler et al. 1998, Lichtenstein & Katsnelson 2000,

Kotliar et al. 2001, Potthoff et al. 2003, Kotliar et al. 2006].

4.3.2 Insulating ground state

Fig. 4.11 shows the spin- and orbital-averaged spectral density

A(ω) = − 1

4π

∑

µσ

ImGµσ(ω) (4.10)

in the paramagnetic phase obtained by the maximum entropy method. The Jahn-

Teller coupling is taken as g = 0.05 eV−3/2 and the eg bandwidth W = 3.6 eV

(t0 = 0.6 eV). Compared to the LDA+DMFT results in Fig. 4.6, A(ω) has a similar

three-peak structure. These peaks stem from the localized orbital and the states

pushed up by the Hund’s rule coupling and the Jahn-Teller splitting as already

marked in Fig. 4.6.
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Figure 4.11: Local spectral density in the paramagnetic phase obtained from the maxi-

mum entropy method for g = 0.05 eV−3/2, W = 3.6 eV and β = 30. We use ∆τ = 0.25 so

that L = 120 imaginary time slices are taken in the QMC samplings.

In Fig. 4.11, there is still some spectral weight in the gap which may stem from

the phonon sideband [Edwards 2002]. The energy gap can hence only be obtained

approximately. Fig. 4.12 plots the gap as a function of bandwidth for g =0.04,

0.05, and 0.06 eV3/2. The results can be compared with the experimental gap of

about 1 eV [Jung et al. 1998, Takenaka et al. 1999]. We find that for U = 5 eV, a

Jahn-Teller coupling g = 0.04− 0.05 eV3/2 is required to account for the electronic

properties of LaMnO3. Such a coupling also gives rise to a critical bandwidth of

4.2− 4.8 eV for the insulator-to-metal transition, consistent with the LDA+DMFT

calculations. A larger coupling constant g = 0.06 eV3/2 leads to a larger energy gap

for W = 3.6 eV and a larger critical bandwidth of 5.4 eV for the insulator-to-metal

transition.

The consistency between the LDA+DMFT and DMFT model calculations sup-

ports our realistic microscopic model (4.2) for describing the electronic behavior of

LaMnO3 and demonstrates once again that the insulating ground state in LaMnO3

at ambient conditions results from the combination of the Coulomb interaction and

the Jahn-Teller coupling in addition to the Hund’s coupling between the eg and t2g
spins.
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Figure 4.12: Energy gap as a function of bandwidth W for the Jahn-Teller coupling

g = 0.04, 0.05, 0.06 eV3/2 at β = 30

4.3.3 Structural transition

As is shown in Fig. 4.10, the structural transition at TOO ≈ 740 K is a first-order

transition with an abrupt volume contraction [Chatterji et al. 2003]. The lattice is

nearly cubic above TOO but has a strongly distorted orthorhombic structure due

to the static Jahn-Teller distortion below TOO. The structural transition is accom-

panied by an orbital order-disorder transition. The low temperature phase shows

a staggered ordering of d3x2−r2 and d3y2−r2 orbitals in the a-b plane which repeats

itself along the c-direction. With a slight modification of the single-impurity DMFT

(QMC) algorithm, we can study a hypothetical antiferromagnetic orbital ordering

on an AB lattice and draw some conclusions about the structural transition in

LaMnO3.

AB lattice To study the antiferromagnetic orbital ordering, the cubic lattice is

separated into two sublattices A and B with alternating eg occupancy. Neglecting

the orbital off-diagonal elements, the two orbital components of the local self-energy

change from site to site so that

ΣA
µ (ω) = ΣB

µ̄ (ω), (4.11)
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4.3 DMFT model calculations

which is equivalent to a uniform potential

Σ(ω) =

(
ΣA1 (ω)+ΣA2 (ω)

2
0

0
ΣA1 (ω)+ΣA2 (ω)

2

)
(4.12)

plus a staggered potential

Σ′(ω) =

(
ΣA1 (ω)−ΣA2 (ω)

2
0

0 −ΣA1 (ω)−ΣA2 (ω)

2

)
. (4.13)

In DMFT, they contribute to the effective action by a term

∑

iµσ

[
Σµ(ω)

(
c†AiµσcAiµσ + c†BiµσcBiµσ

)
+ Σ′µ(ω)

(
c†AiµσcAiµσ − c†BiµσcBiµσ

)]
, (4.14)

where we use subscript A and B for the fermionic operators on A and B sublattices

respectively. In momentum space, Eq. (4.14) becomes

∑

k∈ 1
2
BZ,µσ

[
Σµ(ω)

(
c†kµσckµσ + c†k+Qµσck+Qµσ

)
+ Σ′µ(ω)

(
c†kµσck+Qµσ + c†k+Qµσckµσ

)]
,

(4.15)

where Q = (π, π, π) and k is summed over half of the original Brillioun zone.

Note that Σ′µ(iωn) mixes the two momentum states |k〉 and |k + Q〉 so that we

have to take into account the momentum off-diagonal Green’s function

Gµσ
k,k+Q(τ) = −〈T ckµσ(τ)c†k+Qµσ(0)〉. (4.16)

The equation of motion for the Green’s function has the form:

(
Fk(iωn) −Σ′(iωn)

−Σ′(iωn) Fk+Q(iωn)

)(
Gk(iωn) Gk,k+Q(iωn)

Gk+Q,k(iωn) Gk+Q(iωn)

)
=

( I 0

0 I

)
, (4.17)

where I is the 2× 2 unit matrix and the spin and orbital indices are suppressed to

simplify the notations. Fk(iωn) is a 2×2 matrix defined as

Fk(iωn) = (iωn + µ)I − εk − Σ(iωn). (4.18)

Solving the equation yields

Gk,k+Q(iωn) = Fk(iωn)−1Σ′(iωn)Gk+Q(iωn),

Gk+Q,k(iωn) = Fk+Q(iωn)−1Σ′(iωn)Gk(iωn), (4.19)
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4 Pressure-induced metal-insulator transition

and

Gk(iωn) =
[
Fk(iωn)− Σ′(iωn)Fk+Q(iωn)−1Σ′(iωn)

]−1
,

Gk+Q(iωn) =
[
Fk+Q(iωn)− Σ′(iωn)Fk(iωn)−1Σ′(iωn)

]−1
. (4.20)

The local Green’s functions are then

Gµσ
A (iωn) =−〈T cAµσ(τ)c†Aµσ(0)〉iωn

=
1

V
∑

k∈ 1
2
BZ

[
Gµσ

k (iωn) +Gµσ
k+Q(iωn) + 2Gµσ

k,k+Q(iωn)
]
,

Gµσ
B (iωn) =−〈T cBµσ(τ)c†Bµσ(0)〉iωn

=
1

V
∑

k∈ 1
2
BZ

[
Gµσ

k (iωn) +Gµσ
k+Q(iωn)− 2Gµσ

k,k+Q(iωn)
]
. (4.21)

In the simple case εµνk = εkδµν, we recover the familiar result

Gµσ
A/B(iωn) =

ζ
A/B
µ

V
∑

k∈BZ

1

ζAµ ζ
B
µ − ε2k

, (4.22)

where ζ
A/B
µ = iωn + µ− Σ

A/B
µ (ω). We find

Gµσ
A (iωn) = Gµ̄σ

B (iωn), (4.23)

indicating the alternating occupancy of the eg orbitals on the lattice.

Therefore, in the DMFT calculations, we only need to take care of a single lattice

site of either type (say A). Once the local Green’s function is obtained from Eqs.

(4.20) and (4.21), the effective Weiss field can be calculated from the Dyson equation

G0
A(ω) =

[
GA(ω) + ΣA(ω)

]−1
. (4.24)

The Coulomb interaction and the Jahn-Teller phonons are then treated on a single

site (type A) in QMC. After the DMFT convergence, the orbital symmetry breaking

can be easily seen from the orbital polarization

P = |
∑

σ

(nA1σ − nA2σ)|. (4.25)

If P = 0, there is no symmetry breaking and the orbitals are disordered. If P 6= 0,

then the two eg orbitals are differently occupied, the orbital symmetry is broken and

there exists a finite static Jahn-Teller distortion. Below we discuss the electronic

behavior of the realistic model on an AB lattice.
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Figure 4.13: Local spectral density for the antiferromagnetic orbital ordering calculated

by DMFT (QMC). The parameters are W = 3.6 eV, T = 0.05 eV and g = 0.05 eV3/2.

Electronic behavior Fig. 4.13 shows the local spectral densities of two eg orbitals

for W = 3.6 eV, T = 0.05 eV and g = 0.05 eV3/2. The orbital symmetry is strongly

broken. The occupation number of one orbital is close to one, while the other orbital

is only slightly occupied. Fig. 4.13 also indicates the contributions from different

spin and orbital components. The two peaks at −1 eV and 2 eV stem from the spin

states parallel to the local t2g spins. They are split by the Jahn-Teller coupling.

Other spectral weights are pushed to higher energies by the Hund’s coupling and

the strong on-site Coulomb repulsion. However, the average spectral density is

consistent with our earlier results (see Fig. 4.6 and Fig. 4.11).

Fig. 4.14 plots the orbital polarization as a function of bandwidth and temper-

ature. For W = 3.6 eV, we find a finite orbital polarization below T ≈ 725 K,

in agreement with the experimental result of the structural transition temperature

TOO = 740 K [Chatterji et al. 2003].

If we fix the temperature T = 0.05 eV, the orbital polarization is almost a constant

for the bandwidth W < 4.8 eV and then decreases with increasing bandwidth until

it is reduced to zero at W = 6.0 eV. Such a behavior reflects the nature of the

bandwidth-control metal-insulator transition in LaMnO3. W = 4.8 eV corresponds

to the critical bandwidth where the split minority and majority eg bands start to

overlap. So for larger bandwidth, the orbital polarization decreases rapidly with

increasing bandwidth. The spectral weight at ω = 0 is no longer zero and the

system becomes metallic. Below 4.8 eV, the orbital polarization remains constant
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Figure 4.14: Orbital polarization versus temperature for W = 3.6 eV (red curve) and

bandwidth for T = 0.05 eV (blue curve). The Jahn-Teller coupling is g = 0.05 eV3/2.

since the two eg bands are well separated.

The bandwidth W = 6.0 eV marks a second transition where the orbital polariza-

tion and the Jahn-Teller distortion are completely suppressed. Although different

from Ref. [Loa et al. 2001], we can still identify three distinct regimes at low temper-

ature: (i) an insulating phase with orbital ordering and static Jahn-Teller distortion

below W ≈ 4.8 eV (or PIM = 32 GPa); (ii) an intermediate metallic phase with

orbital ordering and static Jahn-Teller distortion below W ≈ 6 eV; (iii) a metallic

phase with orbital symmetry and dynamic Jahn-Teller distortion above W ≈ 6 eV.

Following Ref. [Loa et al. 2001, Chatterji et al. 2003], they can be examined by x-

ray and neutron powder diffraction and electrical resistivity measurements.
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5 Doped manganites

We are interested in the extraordinary property of colossal magnetoresistance found

over a wide range of doping in perovskite manganites. In La1−xSrxMnO3, the colos-

sal magnetoresistance has been observed to be most pronounced around the Curie

temperature for doping 0.15 < x < 0.2 [Tokura et al. 1994] where the system un-

dergoes a metal-insulator transition as shown in Fig. 1.2. This suggests a strong

connection between the electronic and magnetic properties of manganites.

Theoretically, the low temperature ferromagnetic metallic phase has been qual-

itatively explained by the double exchange mechanism [Zener 1951a, Zener 1951b].

However, the high temperature paramagnetic insulating phase is not yet fully under-

stood. Since the first reports of the colossal magnetoresistance [Chahara et al. 1993,

von Helmolt et al. 1993, Jin et al. 1994], considerable theoretical and experimental

efforts have been devoted to the understanding of the unusual electronic proper-

ties of doped manganites such as the pseudo-gap behavior in the insulating-like

phase. On the theoretical side, the paramagnetic insulating behavior has been at-

tributed to the formation of orbital [Kilian & Khaliullin 1998, Horsch et al. 1999] or

lattice polarons [Röder et al. 1996, Millis et al. 1996a], as well as Anderson localiza-

tion [Varma 1996] and electronic phase separation/percolation [Yunoki et al. 1998,

Moreo et al. 2000, Mayr et al. 2001]. On the experimental side, the optical proper-

ties have been intensively investigated and discussed based on qualitative pictures

[Okimoto et al. 1995, Okimoto et al. 1997, Quijada et al. 1998, Jung et al. 1998,

Takenaka et al. 1999]. The lattice structures have also been carefully analyzed

[Elemans et al. 1971, Hibble et al. 1999].

These studies help to clarify the nature of the paramagnetic insulating phase.

However, a quantitative and complete picture is still needed. As shown in the

last chapter, the Coulomb interaction and the Jahn-Teller coupling are both in-

dispensable. They are, however, always treated separately due to the numeri-

cal difficulties. Also, we still lack the knowledge of the values of the most rel-

evant parameters, namely, the Coulomb interaction U and the Jahn-Teller cou-

pling g. Very different estimates of these parameters can be found in the literature

[Bocquet et al. 1992, Pickett&Singh 1996, Satpathy et al. 1996a, Satpathy et al. 1996b,

Zampieri et al. 1998, Perebeinos & Allen 2000, Popovic & Satpathy 2000].

In this chapter, we try to go one step further and make a detailed numerical analy-
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sis based on the DMFT (QMC) calculations of the realistic microscopic model (4.2).

We will see that the model describes the physics of doped manganites. This allows

for a quantitative comparison between the DMFT calculations and the experimental

data of LaMnO3 and La1−xSrxMnO3 and hence a plausible estimate of the Coulomb

interaction U and the Jahn-Teller coupling g.

The chapter is organized as follows: In section 5.1, we discuss qualitatively the

optical properties of doped manganites. The DMFT results for the realistic micro-

scopic model are presented in section 5.2. By comparing the DMFT results with

experiment, we devote section 5.3 to a new estimate of the parameters. The com-

parison also reveals some discrepancies which require further investigations.

5.1 Experiments

In the last decade, the experimental study of the electronic properties of doped

manganites has made substantial progresses. The phase diagrams of many com-

pounds have been established from resistivity measurements [Tokura et al. 1996,

Tokura & Tomioka 1999, Salamon & Jaime 2001, Dagotto et al. 2001]. In optical ex-

periments, a pseudo-gap behavior is found in the high temperature insulating phase

[Okimoto et al. 1995, Okimoto et al. 1997, Quijada et al. 1998, Jung et al. 1998,

Takenaka et al. 1999], leading to various theoretical suggestions. In the following,

we will first discuss some of these experiments in order to get an impression of the

physics of doped manganites before we perform the numerical calculations in the

next section.

Colossal magnetoresistance Fig. 5.1(a) plots the doping dependence of the re-

sistivity as a function of temperature for La1−xSrxMnO3 [Urushibara et al.1995].

Above the Curie temperature Tc, the resistivity (ρ(T )) shows an insulating behavior

(dρ(T )/dT < 0) for small doping x < 0.3 but becomes metallic (dρ(T )/dT > 0) for

larger doping. Below Tc, the system is more metallic with an insulating behavior

only for x < 0.175. The results are summarized in the phase diagram (Fig. 1.2). A

metal-insulator transition occurs at Tc over a doping range (0.175 ≤ x ≤ 0.25) with

an abrupt change of the resistivity. When an external magnetic field is applied, a

large magnetoresistance is observed near Tc in this doping range.

Fig. 5.1(b) shows the magnetic field dependence of the resistivity at doping x =

0.175. The magnetic field enhances the Curie temperature and turns the insulating

behavior at Tc into a metallic behavior. A large magnetoresistance η ′ ≈ 6 is found

under 15 T [Tokura et al. 1994]. The effect can be even stronger in the manganites

with a smaller Tc such as Pr1−xCaxMnO3 (see, e.g., Ref. [Dagotto et al. 2001]).
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Figure 5.1: (a) Doping dependence of the resistivity as a function of temperature in

La1−xSrxMnO3 crystal. Arrows indicate the critical temperature Tc of the ferromagnetic

transition. Open triangles indicate the anomalies due to the structural transition (corre-

sponding to Ts in Fig. 4.1). Figure taken from Ref. [Urushibara et al.1995]. (b) Magnetic

field dependence of the resistivity as a function of temperature in La0.825Sr0.175MnO3

crystal. Figure taken from Ref. [Tokura et al. 1994].

Thus the CMR effect and the large drop of resistivity at Tc must be related to the

unusual electronic properties such as the high temperature insulating behavior in

doped manganites. If the insulating phase was understood, the CMR, as well as

the metal-insulator transition at Tc over the doping range of 0.175 ≤ x ≤ 0.25 in

La1−xSrxMnO3, could simply be described as a result of the ferromagnetic transition.

Optical conductivity Fig. 5.2 shows the optical conductivity at room temperature

(295 K) obtained from the reflectivity spectra measured on the cleaved surfaces

of La1−xSrxMnO3 [Takenaka et al. 1999]. The insulator-metal phase boundary lies

between the doping x=0.175 and 0.20. The compound is an insulator in the doping

range of 0 ≤ x < 0.175 and a metal at x = 0.3. We find that:

• The low energy optical conductivity is strongly suppressed in the insulating

phase (x = 0.1, 0.15, 0.175). A Drude peak is only present deep into the

metallic region at large doping (x > 0.3).

• The optical conductivity has two peaks in the insulating phase. The low energy

83



5 Doped manganites

region due to optical phonons and two broad peaks, at
about 2 eV and 5 eV, which are assigned to the CT ex-
citations, t32ge

1
g
→t32ge

2
g
L and t32ge

1
g
→t42ge

1
g
L (L denoting

a ligand hole), respectively.12) With slight substitution
(x ≤ 0.10), the lower CT peak disappears and a reflec-
tivity edge suddenly appears at ∼1.6 eV. As x increases,
the edge becomes sharpened, though its position does not
shift appreciably, and the optical phonons are screened.
For x = 0.30 (ferromagnetic-metal), the optical phonons
almost fade away and the spectrum is characterized by
a sharp edge and a large spectral weight below it.
In order to make more detailed discussions, we de-
duced the optical conductivity σ(ω) (Fig. 2) from R(ω)
shown in Fig. 1 via a Kramers-Kronig (K-K) transforma-
tion. Since the experiment covers the energy region up
to 40 eV, which includes contributions from almost all of
the valence electrons in the material, our extrapolation
to the higher-energy region (we assumed R∝ω−4) does
not affect the result in the energy region of interest. For
extrapolation to energies below 5 meV, we assumed a
constant R(ω) for x = 0− 0.175. For x = 0.20, we make
a smooth extrapolation using the Hagen-Rubens (H-R)
formula with σ(0) ∼ 100 Ω−1cm−1, which is roughly in
accordance with the dc value. For x = 0.30, on the
other hand, there is some room for varying extrapo-
lated reflectivities. The value of the dc resistivity for
x = 0.30 in the present experiment is 620± 50 µΩcm at
295 K, corresponding to σ(0) ∼ 1500 − 1750 Ω−1cm−1.
In this range, a simple H-R extrapolation is roughly
in accordance with the measured reflectivity data but
the smoother extrapolation is obtained when we use the
Drude formula; ε(ω) = ε∞ − [4πσ(0)/ω(ωτ + i)] (ε∞: di-
electric constant in the high-energy limit; τ : scattering

at

)
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Fig. 1. Optical reflectivity spectra measured on the cleaved sur-
faces of La1−xSrxMnO3 (0 ≤ x ≤ 0.30). All data were obtained
at room temperature (295 K). The curves are shifted upwards
for increasing Sr-composition.

Fig. 2. Optical conductivity spectra of La1−xSrxMnO3 deduced
from the reflectivity spectra measured on the cleaved surfaces
(shown in Fig. 1) via a Kramers-Kronig transformation: x = 0
(long-dashed line), 0.10 (dashed-and-double-dotted line), 0.15
(dotted line), 0.175 (dashed-and-dotted line), 0.20 (short-dashed
line), and 0.30 (solid line). Inset: Effective carrier number per
Mn-atom N∗eff(ω) defined as the integration of σ(ω). TC = K
(x = 0.15), 283 K (0.175), 305 K (0.20), and 362 K (0.30). The
insulator-metal phase boundary crosses room temperature (295

K) between x = .175 and 0.20.0

235

time).13) One of the best extrapolations is the case for
σ(0) = 1700 Ω−1cm−1 and h̄/τ = 2000 cm−1. We as-
sumed ε∞ = 5 here.

14) In the present study, the dis-
crepancy between ac and dc conductivities, which was
pointed out in the previous study,3) was not confirmed.
Although the value of 2000 cm−1 has less physical mean-
ing, the smooth extrapolation of the Drude formula sug-
gests suppression of the scattering rate for x = 0.3
295 K.15) In any case, variation of the extrapolation pro-
cedures was confirmed to have a negligible effect on σ(ω
above 0.01 eV.
Strontium substitution affects the optical conductiv-
ity over a wide energy range up to 6 eV. The low
CT peak (∼2.4 eV) disappears immediately and the
higher CT peak (∼5.2 eV) decreases and shifts
downwards as Sr substitution proceeds. The reduced
spectral weight at the two CT peaks is transferred
to the lower-energy region for the doped manganites.
For x = 0.15− 0.20, the σ(ω) spectrum is characterized
solely by a broad peak centered at about 1 eV, whic
gradually develops, and the peak position shifts down-
wards as x increases; even for x = 0.20, where the ma-
terial is ferromagnetic-metallic, a Drude-like componen
is not observed. For x = 0.30, the spectrum exhibits
large continuum below the edge (∼1.6 eV) centered
ω = 0.
The immediate vanishing of the lower CT peak indi-

cates that the final state of this excitation, eg↑, merges
into the valence band, the strongly hybridized O2p −
Mneg↑ orbital, and builds up a conduction band. The
downward shift of the higher CT peak can be explained
by the change in the Madelung potential in the Sr-

gradually

Figure 5.2: Optical conductivity of La1−xSrxMnO3 at room temperature (295 K) for dif-

ferent dopings: x=0 (long-dashed line), 0.10 (dashed-and-double-dotted line), 0.15 (dotted

line), 0.175 (dashed-and-dotted line), 0.20 (short-dashed line), and 0.30 (solid line). Inset:

Effective carrier number per Mn-atom N ?
eff (ω) defined as the integration of σ(ω), see

Eq. (3.107). TC =235 K (x = 0.15), 283 K(0.175), 305 K(0.20), and 362 K(0.30). The

insulator-metal phase boundary lies between x =0.175 and 0.20. Figure taken from Ref.

[Takenaka et al. 1999].

peak locates at ω ≈ 1− 2 eV and shifts toward lower energies with increasing

doping. The high energy peak locates at about ω ≈ 6 eV.

Such an optical conductivity suggests a pseudo-gap which has been observed in

La1−xCaxMnO3 (x ∼ 0.3) by scanning tunneling spectroscopy [Fäth et al. 1999].

With increasing doping, the system becomes more and more metallic and the pseudo-

gap is gradually filled. An external magnetic field is expected to have the same effect.

Fig. 5.3 shows the optical conductivity in La1−xSrxMnO3 as a function of tem-

perature [Okimoto et al. 1995, Okimoto et al. 1997]. With decreasing temperature,

the low energy part of the optical spectra is less suppressed. However, the spectrum

is very different for different dopings. It remains insulating-like at x = 0.1 but has

a broad Drude peak at x = 0.3. In between (x = 0.175), the spectrum is almost

constant in the frequency range below 1 eV.
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With a decrease of temperature the reflectivity around 0.3 eV
gradually increases, but little change occurs in the far-
infrared region below 0.06 eV. On the contrary, the spectra
for x50.175 @Fig. 4~b!# and 0.3 @Fig. 4~c!# show a large
variation with temperature. For both compositions, the re-
spective spectra above Tc seem to be rather characteristic of
insulators with distinct optical-phonon structures, but with a
decrease of temperature the low-energy part of the reflectiv-
ity spectra evolves and finally turns into a metallic high-
reflectivity band.

To investigate the electronic structure quantitatively, we
derived optical conductivity spectra s(v) by Kramers-
Kronig analysis. In Fig. 5 we show the temperature depen-
dence of s(v) for x50.1, 0.175, and 0.3. In the x50.1
spectra @Fig. 5~a!#, there is little spectral weight below 0.2
eV apart from that of the three major phonon modes. As
temperature decreases, the spectral weight is gradually accu-
mulated in the mid-infrared region around 0.3 eV, but never
transferred down to the low-energy region below 0.1 eV.
This is in accord with the carrier localization behavior as
seen in the r-T curve for x50.1 ~Fig. 1!. In the s(v) spectra
for the x50.175 @Fig. 5~b!# and 0.3 @Fig. 5~c!#, on the other
hand, the spectral weight shows a large temperature-
dependent variation up to above 2 eV, indicating that the
quantity that governs the spin-polarization-dependent elec-
tronic structure has a large energy scale. In Figs. 5~b! and
5~c!, each spectrum above Tc ~with no spin polarization!
forms a broad peak ~at '1.5 eV for x50.175 and '1.3 eV
for x50.3). These broad peaks are mainly composed of the
interband transitions between the O 2p and Mn 3d (eg)
states, but their spectral weight gradually decreases and is
transferred into the lower-energy part, 0–1.0 eV for
x50.175 and 0–0.5 eV for x50.3, with decrease of tem-
perature. It is noteworthy that there is a clear difference in

the energy scale of the spectral weight transfer between
x50.175 and 0.3. Such a temperature dependence of s(v)
over a wide photon energy region is quite unconventional,
and reminiscent of the Mott transition in the correlated elec-
tron system.

To analyze the spectral weight transfer with change of
temperature ~or spin polarization of the conduction elec-
trons!, we extract the temperature-independent part from the
optical conductivity spectra. In Figs. 5~a!–5~c!, the respec-
tive curves of s(v) spectra at various temperatures form an
envelope as depicted by a hatched curve in the figure which
is composed of the lowest-lying points of all the conductivity
spectra at each photon energy. It is reasonable to consider
that such a temperature-independent part stands for the
‘‘background’’ interband transitions between the O 2p and
Mn 3d band which are not affected by change of spin polar-
ization. Here we define a reduced optical conductivity spec-
trum „s̃(v)… by subtracting the temperature-independent part
~drawn by hatching! from each s(v) spectrum. In Figs. 6~a!,
6~b!, and 6~c!, we show s̃(v) spectra for x50.1, 0.175, and
0.3, respectively. We omitted the infrared phonon parts to
avoid complexity. In Fig. 6~a! (x50.1), the spectral weight
in the midinfrared region increases with decrease of the tem-
perature. On the other hand, Figs. 6~b! and 6~c! (x50.175
and 0.3! show that the gaplike transition on the higher-
energy side above Tc is gradually reduced in intensity, and
changes into the v50 centered band as temperature de-
creases.

The formation of a midinfrared peak as observed in the
low-temperature s̃(v) spectra for x50.1 is often seen in the
spectra of low-doped Mott-insulators which still remain in-
sulating or semiconducting due to some localization

FIG. 4. Reflectivity spectra at various temperatures in
La 12xSrxMnO3: ~a! x50.1, ~b! x50.175, and ~c! x50.3.

FIG. 5. Optical conductivity spectra at various temperatures in
La 12xSrxMnO3: ~a! x50.1, ~b! x50.175, and ~c! x50.3. The
hatched curves represent the temperature-independent parts of the
spectra deduced from the envelope of the respective curves.

55 4209VARIATION OF ELECTRONIC STRUCTURE IN . . .

Figure 5.3: Temperature dependence of the optical conductivity in La1−xSrxMnO3 at

doping x=0.1 (a), 0.10 (b) and 0.3 (c). The hatched curves represent the temperature

independent parts of the spectra deduced from the envelope of the respective curves.

Figure taken from Ref. [Okimoto et al. 1997].

Since the t2g and eg spins are almost fully polarized at T � Tc, the unusual feature

at x = 0.175 implies the existence of scattering mechanisms other than the spin dis-

order. It is the combination of these additional mechanisms and the spin scattering

that results in the insulating behavior in the high temperature paramagnetic phase.
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5 Doped manganites

Without spin scattering (below Tc), these additional mechanisms lead to a ”bad”

metal in La0.825Sr0.175MnO3. As discussed in chapter 2, both the on-site Coulomb

interaction and the Jahn-Teller coupling can give rise to additional scatterings of

the eg conduction electrons. The question is, of course, whether their effects are

strong enough to account for the unusual behavior of the optical spectra of doped

manganites. In the next section, we will study this issue based on DMFT (QMC)

calculations of our realistic microscopic model.

5.2 DMFT model calculations

In the section, we present the DMFT calculations for doped manganites. Part of

the work is contained in the preprint [Yang & Held 2006].The Hamiltonian is again

given by

H = −
∑

〈〈ij〉〉;µνσ
tijµνc

†
iµσcjνσ − 2J

∑

i;µ

siµ · Si

+ U
∑

i;µ

niµ↑niµ↓ +
∑

i;σσ̃

(V − δσσ̃F )ni1σni2σ̃

− g
∑

i;µνσ

c†iµσ(Q2iτ
x +Q3iτ

z)µνciνσ +
∑

i;a

(
P 2
ai

2
+

Ω2

2
Q2
ai

)
. (5.1)

The hopping integral tijµν is given by Eq. (2.23). The parameters are taken as:

W = 3.6 eV from the LDA calculations for the cubic structure, 2JS = 2.66 eV from

the constrained LDA calculations, U = 5 eV, F = 0.75 eV, and V = U−2F = 3.5 eV

estimated from Ref. [Park et al. 1996], and Ω = 0.07 eV from Raman spectroscopy

[Iliev et al. 1998]. The Jahn-Teller coupling g is assumed to be a free parameter.

As for the undoped system, we first discuss the probability distribution of the lat-

tice distortion in section 5.2.1. The DMFT results for the electron spectral density

are presented in section 5.2.2. Based on these results, the optical conductivity (sec-

tion 5.2.3) and the Curie temperature (section 5.2.4) are calculated and compared

with experiments, which allows us to conclude that the Jahn-Teller coupling and

the Coulomb interaction can actually explain the optical experiments discussed in

the last section.

5.2.1 Lattice distortion

Fig. 5.4 plots the probability distribution of the lattice distortion for n = 0.8 (x =

0.2) at different temperatures and couplings. Unlike the single peak distribution

obtained for the undoped case in section 4.3.1, we find two peaks in the distribution
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Figure 5.4: Probability distribution of the lattice distortion at n = 0.8 (x = 0.2) for: (a)

g = 0.10 and β = 8 and 16; (b) β = 16 and g = 0.05, 0.10, and 0.15.

function at large Jahn-Teller couplings for doped systems. The large peak located

at about g/Ω2 corresponds to the large lattice distortion due to the Jahn-Teller

coupling, while the small peak stems from the quantum and thermal fluctuation of

the MnO6 octahedra which do not couple to eg electrons because of doping. For a

weak coupling g = 0.05, the two peaks are merged together. With increasing g, the

structure gradually shows up and the two peaks become well separated for a strong

coupling g = 0.15.

The position of the large distortion peak and its coupling dependence can be easily

understood from the single-site model (2.8), in which the static lattice distortion

locates approximately at g/Ω2, while the position of small distortion peak remains

independent of the coupling g as shown in Fig. 5.4(b). Thus for a small g, the two
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5 Doped manganites

peaks are overlapping. It is only for strong couplings such as g = 0.10 and 0.15

that the two peaks can be separated and the separation increases linearly with the

coupling constant g. The temperature dependence of the probability distribution

in Fig. 5.4(a) can be understood by the reduction of the thermal vibration which

narrows both peaks and thus enhances their separation at low temperatures.

The separation of the two peaks in the probability distribution makes it difficult

for the QMC sampling at low temperature or for strong Jahn-Teller coupling. The

important configurations locate in two separated regions in the configuration space

of the Jahn-Teller phonons. It is almost impossible to update the phonon fields from

one region to the other. To obtain a good QMC sampling, we would have to use

special methods [Swendsen & Wang 1986, Moreno et al. 2003, Earl & Deem 2005].

Unfortunately, these special methods often require a bigger computational effort.

One way out is to assign a relative probability Pa to each separated region a

at low temperature (e.g., β = 30) or for strong Jahn-Teller coupling (g > 0.12).

We then sample each region separately and average the results according to the

assigned probabilities. Note that in Fig. 5.4(a), the distribution function shows

a low temperature limit. Therefore, we can obtain the assigned probabilities by

extrapolating the high temperature results which do not lead to numerical problems

in the QMC simulations. In fact, we find

Pc = 1− n = x, (5.2)

where Pc is the relative probability of the lattice distortion between [0, g/2Ω2]. Fig.

5.5 plots the calculated Pc as a function of doping at β = 8 and 16. With decreasing

temperature, the results approach Eq. (5.2).

The physical background of the above approximation is the localization of the

eg electrons. For strong Jahn-Teller coupling, the local property of the system can

be approximately described by a single-site model. The conduction electrons are

completely localized by the large lattice distortion so that the probability of the

large distortion region in the distribution function should be approximately equal

to the electron occupation number n. This explains Eq. (5.2).

In the lattice model, the above discussion suggests a relation between the struc-

ture of the distribution function and the electron spectrum. Fig. 5.6 compares the

distribution of the lattice distortion and the corresponding electron spectral densi-

ties. For clarity, we separate the spectrum into two parts originated from the large

and small lattice distortions, respectively. For the large lattice distortion, the cor-

responding spectral density locates well below or far above the Fermi energy. The

low energy part can be identified as localized eg electrons, while the high energy

part stems from the states which are pushed up by the Hund’s rule coupling, the
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Figure 5.5: Probability of the lattice distortion between [0, g/2Ω2] in the distribution

function of the lattice distortion versus the average occupation number n. The parameters

are β = 8, 16 and g = 0.10. These high temperature results can be extrapolated to give

the low temperature probability of each peak in the distribution function.

Jahn-Teller splitting and the Coulomb repulsion. For the small lattice distortion,

most of the spectral density locates slightly above the Fermi energy. They stem

from the ”undistorted” unoccupied states which are also called ”midgap states” in

the literature [Millis et al. 1996a, Jung et al. 1998].

We note that a very similar (two maxima) distribution of the averaged Ising-

like field is observed for the DMFT Mott insulator, where it indicates the presence

of a localized spin (up or down); and the slow QMC dynamics from spin up to

down reflects the long-time stability of the spins in the Mott-insulating phase of the

Hubbard model. Thus the slow dynamics from large (small) lattice distortion to

small (large) lattice distortion may also indicate a long-time stability of the lattice

distortion in real material. This is exactly the lattice polaron picture. The electrons

are trapped as lattice polarons by the large lattice distortion. The spectral density

of the eg electrons can be regarded as a combination of the polaron states and the

midgap states.

The separation the spectrum into the polaron states and the midgap states leads

to an effective two-band model as was discussed in Ref. [Ramakrishnan et al. 2004],

where it was assumed that the low-energy eg band separates into a localized band

below the Fermi energy and a delocalized band which dominates the transport prop-
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Figure 5.6: Probability distribution of the lattice distortion and the corresponding elec-

tron spectral densities for the Jahn-Teller coupling g = 0.10 (left panel) and 0.15 (right

panel) at inverse temperature β = 16. The electron spectral densities are separated into

two parts with large and small lattice distortions. The arrows indicate the separation

between peaks. The phonon distribution at g = 0.10 without the Coulomb interaction is

also shown for comparison.

erties of doped manganites. This model neglects the hybridization of the two kind

of states. According to our results, it is valid only if we focus on the low energy

electronic behavior of the system and the Jahn-Teller coupling is strong enough so

that the eg electrons can be trapped as lattice polarons.

Finally, we remark about the role of the on-site Coulomb interaction. Fig. 5.6 also

compares the probability distribution of the lattice distortion with and without the

Coulomb interaction. For U = 0, the two peaks are less separated which indicates

the enhancement of the polaron formation by the Coulomb interaction. This is be-

cause the quasiparticles are strongly renormalized by the strong Coulomb interaction

and thus much easier to be trapped by lattice distortion and spin disorder. Fig. 5.7

compares the spectral densities for g = 0.10 with and without the Coulomb interac-
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Figure 5.7: Paramagnetic spectral density at n =0.8, β = 16 and g = 0.10 for U = 0 eV

and U = 5 eV.

tion. For U = 5 eV, the polaron states below the Fermi energy are more localized.

Some spectral weight is pushed away from the Fermi energy to higher energies and

the pseudo-gap is strongly enhanced by the Coulomb interaction. Together with our

LDA+DMFT results for LaMnO3, this further confirms the important role of the

Coulomb interaction in manganites.

5.2.2 Spectral density

The formation of lattice polarons provides for the basic physics of doped manganites.

The electron spectral density can be seen as a combination of polaron states well

below the Fermi energy and the midgap states above the Fermi energy. As shown

in Fig. 5.6, this results in the strong suppression of the spectral weight at the Fermi

energy and gives rise to a large energy gap for g = 0.15 and a pseudo-gap for

g = 0.10.

Fig. 5.8 plots the spectral density of the paramagnetic state for different couplings

at β = 16 and n = 0.8. Without Jahn-Teller coupling, the spectrum has a broad

quasiparticle peak at the Fermi energy and the system is metallic. With increasing

g, the quasiparticle peak is gradually suppressed and the spectral weight at the

Fermi energy is reduced, leaving a dip in the spectrum for intermediate coupling

and an energy gap for strong coupling. The low (high) energy Hubbard band also

shifts toward lower (higher) energies. An additional peak shows up at ω = 1− 2 eV,
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Figure 5.8: Electron spectral density in the paramagnetic phase for different couplings

g = 0, 0.05, 0.10, and 0.15. The parameters are β = 16 and n = 0.8. The quasiparticle

peak is suppressed at large g, giving the pseudo-gap behavior for intermediate coupling

and a large energy gap for strong coupling.

ascribed to the midgap states with small dynamic lattice distortion.

The temperature dependence of the spectra is presented in Fig. 5.9 for both the

paramagnetic and ferromagnetic phases. In the paramagnetic phase, the spectral

weight at the Fermi energy is found to be more suppressed at lower temperature (see

Fig. 5.9(a)). This is consistent with the temperature dependence of the distribution

function of the lattice distortion shown in Fig. 5.4(a) in which the two peaks with

small and large distortions are more separated at lower temperature.

Fig. 5.9(b) compares the spectral density of the paramagnetic and ferromagnetic

phases at β = 30. Here the ferromagnetic results are obtained with (artificial) full

spin polarization. We find that the pseudo-gap at the Fermi energy is filled in the

ferromagnetic phase. This can be understood by the enhancement of the effective

quasiparticle bandwidth with the spin ordering in the ferromagnetic phase. The low

energy polaron peak in the spectrum is thus expected to be widened, giving rise to

a larger spectral weight at the Fermi energy.

Now we turn to the doping dependence of the spectrum. Fig. 5.10 shows the

spectral density for different dopings at β = 16 and g = 0.10. Without doping, the

system is a good insulator. The spectrum shows a large energy gap (about 2.3 eV)

which is beyond the experimental value of 1 eV and hence suggests a slightly larger
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Figure 5.9: Spin-averaged spectral density at: (a) β = 16 and 30 in the paramagnetic

phase; (b) β = 30 in both the paramagnetic and ferromagnetic phases. The parameters

are g = 0.10 and n = 0.8. The different spin components in the ferromagnetic spectral

density are also plotted (the dashed lines). The antiparallel spin states only contribute to

the high energy broad peak due to the large Hund’s coupling.

Coulomb interaction and/or Jahn-Teller coupling used in the calculations. A small

doping x = 0.1 introduces some midgap states just above the Fermi energy and

changes the large energy gap into a pseudo-gap at the Fermi energy. If the doping

is large enough, the midgap states can dominate at the Fermi energy so that the

pseudo-gap is completely filled (at n = 0.3). However, due to the strong lattice,

orbital and spin scatterings, the quasiparticle peak is still suppressed.

5.2.3 Optical conductivity

In this section, we calculate the optical conductivity from the DMFT results fol-

lowing the method discussed in section 3.4 and compare it with experiments. We
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Figure 5.10: Paramagnetic spectral density for different electron occupations n =1.0, 0.9,

0.8, 0.5, and 0.3 at β = 16 and g = 0.10.

find that all the optical properties such as the pseudo-gap behavior in the param-

agnetic phase and the ”bad” metallic behavior in the ferromagnetic phase can be

obtained theoretically by DMFT. The metal-insulator transition and the colossal

magnetoresistance are also explained as a result of the magnetic transition.

Fig. 5.11 shows the optical conductivity in the paramagnetic phase for different

occupancies n = 0.8, 0.5, and 0.3. We take β = 30 and g = 0.10. The spectra have

two peaks at 1-2 eV and 6 eV and with increasing doping, the low energy optical

peak shifts to lower energies, in agreement with the experimental observations (see

Fig. 5.2, for example) [Okimoto et al. 1995, Jung et al. 1998, Takenaka et al. 1999,

Tobe et al. 2004].

This agreement allows us to identify the origin of the two optical peaks. Note

that in Fig. 5.9, the electron spectral densities contain three peaks, consisting of

the polaron states below the Fermi energy, the undistorted unoccupied states or the

midgap states just above the Fermi energy, and the distorted unoccupied states far

above the Fermi energy. The charge transitions between these states give rise to the

optical peaks in the numerical calculations (Fig. 5.11). So the low energy optical

peak at 1-2 eV is from the excitation of the localized polarons to the (undistorted

unoccupied) midgap states (interatomic Mn3+Mn4+ →Mn4+Mn3+), while the high

energy optical peak at 6 eV stems from the interatomic Mn3+Mn3+ →Mn4+Mn2+

transition, namely, the excitation of the polaron states to the high energy states
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Figure 5.11: Optical conductivity in paramagnetic phase for different electron occupations

n = 0.8, 0.5, 0.3 at β = 30 and g = 0.10.

on a neighboring occupied site. Since in our theory the midgap states do not exist

in the undoped case and are unique for doped manganites, they do not contribute

to the optical spectrum of LaMnO3. For different parameters such as a smaller

Coulomb interaction U , part of the the interatomic Mn3+Mn3+ →Mn4+Mn2+ process

may also contribute to the low energy optical peak. Thus the low energy optical

peak at 1-2 eV may have two different contributions: the polaron excitation to the

(undistorted unoccupied) midgap states (only in doped manganites) and part of the

interatomic Mn3+Mn3+ →Mn4+Mn2+ transition. Fig. 5.12 sketches these different

optical processes.

Historically, the midgap states (the 1-eV feature) in the optical spectra was

first observed by [Okimoto et al. 1997] and ascribed to the transition between the

eg spin states parallel and antiparallel to the local t2g spin. This interpretation

was later proved to be wrong [Quijada et al. 1998, Jung et al. 1998]. Experimen-

tally, an intraatomic Mn3+ →Mn3+ process has also been argued to be present in

both doped and undoped manganites due to the O 2p and Mn 3d hybridization

[Jung et al. 1998]. But more work is necessary and the exact origin of the first

optical peak is not yet established experimentally.

Let me also note that, in experiment, the high energy optical peak has a larger

magnitude than the low energy peak, which is different from our numerical results.

This may be ascribed to other contributions from the oxygen charge transfer, La
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Figure 5.12: Schematic representation of the optical processes in doped manganites.

Arrows indicate the processes. The right red arrow represents the polaron excitation to

the midgap states. The left arrows represent the interatomic Mn3+Mn3+ →Mn4+Mn2+

transition. We use the red color for the possible contributions to the low energy optical

peak and the blue color for the process contributed to the high energy optical peak.

bands, and the upper Hubbard band of the t2g electrons, etc. Such effects are be-

yond our low-energy Hamiltonian. In fact, in Ref. [Jung et al. 1998], the effective

kinetic energy of the eg electrons calculated from the experimental optical conduc-

tivity below 3 eV is already beyond the noninteracting kinetic energy, indicating the

existence of additional contributions other than the Mn eg bands.

Fig. 5.13 shows the temperature dependence of the optical conductivity in the

paramagnetic phase. The low energy optical conductivity is suppressed as a result

of the pseudo-gap in the spectral density. With decreasing temperature, the optical

spectrum is more suppressed since there is less thermal excitation. The resistivity

is thus enhanced at low temperature, giving rise to the insulating behavior in the

paramagnetic phase.

Fig. 5.14 compares the optical conductivity in the paramagnetic and ferromagnetic

phase at n = 0.8 and β = 30. Due to the spin ordering in the ferromagnetic phase,

the pseudo-gap in the low energy optical conductivity is filled. However, instead of a

sharp Drude peak, the optical spectrum is almost constant below 1 eV in agreement

with experiment (see Fig. 5.3). This indicates the strong damping of quasiparticles

due to the orbital disorder and the lattice distortion in doped manganites, even in

the ferromagnetic phase. In fact, we find a large imaginary part of the self-energy

|ImΣ(0)| ∼ 1.9 eV. The system is a ”bad” metal below Tc.

At ω = 0, Fig. 5.14 shows that the resistivity in the paramagnetic phase is about
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Figure 5.13: Optical conductivity in the paramagnetic phase at average occupancy n =

0.8 and inverse temperature β = 8, 16, and 30.
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Figure 5.14: Optical conductivity in both the paramagnetic and ferromagnetic phases at

n = 0.8 and β = 30. The low energy part of the optical spectrum is strongly enhanced in

the ferromagnetic phase.
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Figure 5.15: Resistivity as a function of temperature in both the paramagnetic and

ferromagnetic phases at n = 0.8. The different temperature dependence of the resistivity

between two phases leads to the ”colossal” magnetoresistance under magnetic field and

the metal-insulator transition at Tc.

8 times larger than that in the ferromagnetic phase at β = 30. This indicates

an abrupt drop of the resistivity at the Curie temperature. Since in our DMFT

calculations the ferromagnetic phase is treated by assuming (artificial) full spin po-

larization, a strong magnetic field should lead to the same results. We thus expect

a large magnetoresistance, although the detailed behavior of the resistivity below

Tc or under an external magnetic field is more complicated due to the incomplete

magnetization. The results also demonstrate that the magnetoresistance is strongly

enhanced by the different behavior of the resistivity, namely, the metallic and insu-

lating behavior, below and above Tc.

Fig. 5.15 plots the resistivity at high temperature in both the paramagnetic phase

and the hypothetic ferromagnetic phase. This allows us to observe the tendency of

the resistivity at low temperature (T < 400 K). We see good agreement with the

experimental results shown in Fig. 5.1(a).

To summarize, a strong Jahn-Teller coupling suppresses the spectral weight at

the Fermi energy. The electron spectral density is found to be a combination of the

polaron states, the (undistorted unoccupied) midgap states, and the distorted un-

occupied states. This gives rise to the pseudo-gap behavior in the high temperature

paramagnetic phase. The excitation from the polaron states to the midgap states
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explains the low energy optical peak observed in doped manganites. The high energy

optical peak comes from the interatomic Mn3+Mn3+ →Mn4+Mn2+ transition, as well

as other possible contributions beyond the two-band model. In the ferromagnetic

phase, the eg electrons are less scattered due to the spin ordering. So the system is

more metallic below Tc and the metal-insulator transition occurs as a result of the

magnetic transition. Despite of this, the orbital disorder and the lattice distortion

induce strong damping of quasiparticles even far below the Curie temperature and

the system shows ”bad” metallic behavior over a wide doping range. The abrupt

change of the magnetization at the Curie temperature leads to the abrupt change of

the spin scattering and thus the resisitivity. Under an external magnetic field, the

Curie temperature increases and the system changes from an insulator to a metal,

resulting in the ”colossal” magnetoresistance in doped manganites.

5.2.4 Curie temperature

To complete our DMFT investigations for doped manganites, we also present a short

discussion on the theoretical Curie temperature following the method introduced

in section 3.3. We first calculate the static spin susceptibility χ(T ) in the high

temperature paramagnetic phase and then fit χ(T )−1 linearly to obtain the Curie

temperature Tc.

As an example, Fig. 5.16 shows the doping dependence of the Curie temperature

for the Jahn-Teller coupling g = 0.10 eV3/2. Compared to the experimental results

in Fig. 1.2, the theoretical predictions of Tc have a similar shape with a maximum

at intermediate doping but are about 2-3 times larger in magnitude. As discussed

previously in section 3.3, the Curie temperature is suppressed close to n = 1 (x = 0)

due to the high energy cost of double occupancy to overcome the strong Coulomb

repulsion, the Jahn-Teller splitting, and the Hund’s rule coupling. For large doping,

the total kinetic energy is reduced, and according to the double exchange mechanism,

the indirect ferromagnetic coupling between Mn t2g spins induced by the hopping of

the eg electrons is also reduced, resulting in a relative low Curie temperature. The

effect of the Coulomb interaction is most important near n = 1 and becomes less

effective at large doping.

The magnitude of the Cure temperature depends strongly on the strength of

the Jahn-Teller coupling and the hopping integral of the eg electrons. Fig. 5.17

plots its coupling dependence at n = 0.8, which are similar to the previous results

in [Millis et al. 1996c, Edwards 2002] (also see Fig. 2.5). The Curie temperature

decreases rapidly with increasing coupling. For strong Jahn-Teller coupling, a slight

increase of g from 0.10 to 0.12 (or the dimensionless coupling λ from 2.0 to 2.2)
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Figure 5.16: Curie temperature as a function of doping x = 1− n for g = 0.10.
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Figure 5.17: Curie temperature as a function of the dimensionless coupling λ = g/Ω
√
t0

at n = 0.8. The parameters are t0 = 0.6 eV and Ω = 0.07 eV.

reduces Tc by a factor of 2 so that g = 0.12 (or λ = 2.2) gives the correct experimental

value.

The Curie temperature may also be affected by many factors which are not in

the low-energy Hamiltonian. These include the quantum fluctuation of Mn t2g spins
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5.3 Estimates of parameters

and the antiferromagnetic superexchange coupling between Mn t2g spins. Both

tend to weaken the ferromagnetic order and suppress the Curie temperature. The

antiferromagnetic superexchange coupling has been estimated to be the order of

200 K [Perring et al. 1997, Dagotto et al. 2001] which, if taken into account, would

greatly reduce the theoretical value of the Curie temperature.

Historically, the Curie temperature has been calculated with different methods

such as DMFT [Millis et al. 1995, Millis et al. 1996a, Held & Vollhardt 2000], the

mean-field theory [Röder et al. 1996], QMC simulations [Yunoki et al. 1998], and

the many-body CPA [Edwards 2002]. Some of the results seem to be in better

agreement with experiments. However, we should note that these results are all

based on the details of the models and approaches and are very sensitive to the values

of the parameters which, unfortunately, are not always reliable and, as a matter of

fact, vary considerably in the literature. A complete analysis of the problem is still

required.

5.3 Estimates of parameters

In the last section, we have discussed the DMFT (QMC) calculations for doped man-

ganites. The pseudo-gap behavior in the paramagnetic phase and the bad metallic

behavior in the ferromagnetic phase have been understood theoretically, and the op-

tical spectra have been interpreted as the excitation of lattice polarons. Also in the

last chapter, we have clarified the nature of the pressure-induced insulator-to-metal

transition based on LDA+DMFT calculations. These results support the important

roles of both the Coulomb interaction and the Jahn-Teller coupling in manganites.

Therefore, if it is true that the low energy optical peak of LaMnO3 stems from

the interatomic Mn3+Mn3+ →Mn4+Mn2+ transition as is that of doped manganites,

our realistic microscopic Hamiltonian (2.20) allows for a unified description of both

doped and undoped manganites.

Qualitatively, the effects of both interactions are already very clear. The Jahn-

Teller coupling leads to the formation of lattice polarons and plays a crucial role

in determining the physics of doped manganites, whereas the Coulomb interaction

strongly renormalizes the quasiparticle bandwidth and thus enhances the formation

of lattice polarons. In LaMnO3, the orbital splitting induced by the Jahn-Teller

distortion is enhanced by the Coulomb repulsion, giving rise to the insulating ground

state. In both doped and undoped systems, the low energy spectral weight in the

optical conductivity is transfered to higher energies because of the existence of the

two interactions and the Hund’s rule coupling.

However, we still need to find a set of consistent parameters for both systems. To
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5 Doped manganites

obtain the 1 eV energy gap in LaMnO3, we have taken U = 5 eV and g = 0.05 eV3/2,

but a larger Jahn-Teller coupling g = 0.10 eV3/2 is required to explain the pseudo-

gap behavior in doped manganites. Therefore, a quantitative and systematic study

is still necessary in order to find a unique set of U and g.

To this end, we include the breathing mode Q1i and study the model Hamiltonian

H = −
∑

〈〈ij〉〉;µνσ
tijµνc

†
iµσcjνσ − 2J

∑

i;µ

siµ · Si

+ U
∑

i;µ

niµ↑niµ↓ +
∑

i;σσ̃

(V − δσσ̃F )ni1σni2σ̃

− g
∑

i;µνσ

c†iµσ(Q1iI +Q2iτ
x +Q3iτ

z)µνciνσ +
∑

i;a

(
P 2
ai

2
+

Ω2

2
Q2
ai

)
. (5.3)

The effect of the breathing mode will be first discussed. Then we provide a new

estimate of the parameters by comparing the theoretical and experimental results

of the energy gap in LaMnO3 and the resistivity in La1−xSrxMnO3.

The breathing mode As before, we use DMFT (QMC) to study the physical effect

of the breathing mode. As an example, Fig. 5.18 shows the probability distribution

of both the breathing and Jahn-Teller phonon fields at β = 16 and n = 0.8. The
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Figure 5.18: Probability distribution of the breathing (Q1)and Jahn-Teller (Q) modes

for the model Hamiltonian (5.3) at n = 0.8 and β = 16. The parameters are U = 5 eV,

V = 3.5 eV, F = 0.75 eV, and g = 0.08 eV3/2 . The phonon frequencies are Ω = 0.07 eV for

all three modes.

102



5.3 Estimates of parameters

phonon frequency is Ω = 0.07 eV for all three modes. We take g = 0.08 eV3/2,

U = 5 eV, F = 0.75 eV and V = 3.5 eV. Except for the Jahn-Teller distortion Q

being positive by definition, the distribution function of the breathing phonon is

similar to that of the Jahn-Teller distortion and has also two peaks located at about

g/Ω2 and 0 . These two peaks are related to the polaron states and the midgap

states discussed before. The only difference is the way in which the phonon modes

are coupled to the eg electrons: The breathing mode is coupled to the electron

density, while the Jahn-Teller modes are coupled to the orbital polarization (with

respect to a certain basis). Due to the Hund’s coupling and the strong Coulomb

interaction, the double occupancy is forbidden. So the difference is not reflected in

the distribution function.

Since the breathing mode only couples to the electron density, it lowers the local-

ization energy of the polaron states but leaves the midgap states unchanged. The

eg electrons are thus more localized due to the inclusion of the breathing mode and

the system becomes more insulating.

Fig. 5.19 compares the spectral densities at β = 16 and n = 0.8 with and without

the breathing phonon. As expected, we see the density of states at the Fermi energy

is strongly suppressed by the existence of the breathing mode.
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Figure 5.19: Electron spectral density for U = 5 eV, V = 3.5 eV, F = 0.75 eV, n = 0.8

and β = 16. The coupling constant is taken as g = 0.08 for calculations with all three

phonon modes and g = 0.08, 0.10 for calculations with only the Jahn-Teller modes. The

phonon frequencies are Ω = 0.07 eV for all three modes.
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Parameters To complete the thesis, we make a new estimate of the most relevant

parameters, the on-site Coulomb interaction U and the Jahn-Teller coupling g, based

on the DMFT model calculations of the realistic microscopic model (5.3) and the

optical data of manganites. We take into account the breathing mode and, for

simplicity, fix all other parameters as following: the bandwidth W = 3.6 eV for the

cubic structure, the exchange interaction F = 0.75 eV, the Hund’s rule coupling

2J |S| = 2.7 eV, and the phonon frequency Ω = 0.07 eV for all three phonon modes.

Due to the cubic symmetry, we have V = U − 2F .

The two parameters U and g will be determined by fitting the optical data of the

energy gap (about 1 eV) in LaMnO3 [Okimoto et al. 1995, Quijada et al. 1998,

Jung et al. 1998, Takenaka et al. 1999] and the resistivity (roughly 0.035 Ωcm at

β = 30) in La0.825Sr0.175MnO3 [Tokura et al. 1994, Urushibara et al.1995].

The inset (a) of Fig. 5.20 plots the energy gap for different Coulomb interactions U

and Jahn-Teller couplings g calculated by DMFT (QMC) for the model Hamiltonian
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Figure 5.20: Two sets of parameters which fit the experimental energy gap in LaMnO3

and the resistivity in La0.825Sr0.175MnO3. Their intersection gives a single set of U and g

which is expected to describe quantitatively both doped and undoped manganites. The

insets show the DMFT (QMC) results as a function of the Coulomb interaction U and

the Jahn-Teller coupling g for: (a) the energy gap at n = 1 and (b) the resistivity at

n = 0.825. Both are calculated at β = 30. The experimental results are indicated by the

dotted line with the 1 eV energy gap in LaMnO3 and the resistivity of about 0.035 Ωcm

for La0.825Sr0.175MnO3 [Tokura et al. 1994, Urushibara et al.1995].
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(5.3). As expected, the energy gap depends strongly on both parameters.

The inset (b) of Fig. 5.20 shows the DMFT (QMC) results of the resistivity for

different U and g at n = 0.825 (x = 0.175) and β = 30 eV−1. As has been analyzed

before, the Coulomb interaction also affects the resistivity of the system since it

enhances the electron localization. This is now proved explicitly in the figure. The

resistivity increases with increasing U . Also, it depends more sensitive on g than U

due to the polaron physics in which the Coulomb interaction has only an indirect

influence. As we can see, the effect of the Coulomb interaction is most important

near n = 1 and becomes less effective at large dopings.

By comparing with the experimental data, the above two figures provide for two

different sets of U and g which we plot in the main panel in Fig. 5.20. The inter-

section of the two sets of parameters gives U = 3.3 eV and g = 0.077 eV3/2. These

results agree with the previous experimental estimates (Table 2.1 in section 2.4) and

are thus expected to be a proper choice for the model Hamiltonian (5.3) to describe

quantitatively the optical experiments of both doped and undoped manganites. Ta-

ble 5.1 presents the estimated values of all the parameters.

As a final example, Fig. 5.21 shows the optical conductivity for different dopings

using the new parameters. The inset is the effective carrier concentration Neff(ω)

calculated from the integral of the optical conductivity using Eq. (3.107). For direct

comparison, the figure is plotted analogous to the experiment in Fig. 5.2. We see a

continuous crossover from the undoped to the doped system and a good agreement

in the general behavior of the optical conductivity. However, as discussed before, the

experimental magnitude of the optical peaks are 2-3 times larger than the theoreti-

W U 2J|S| F Ω g

3.6 eV 3.3 eV 2.7 eV 0.75 eV 0.07 eV 0.077 eV3/2

Table 5.1: Parameters estimated for manganites. W: bandwidth; U: intra-orbital

Coulomb interaction; F: eg-eg exchange interaction; J: eg-t2g Hund’s coupling; Ω:

phonon frequency; g: Jahn-Teller coupling. The bandwidth is obtained from the

LDA calculations for the cubic structure [Yamasaki et al. 2006], the Hund’s coupling

is calculated by the constrained LDA for the ferromagnetic phase, and the phonon

frequency is estimated from the Raman spectroscopy [Iliev et al. 1998]. Only the

Coulomb interaction U and the Jahn-Teller coupling g are estimated from the DMFT

(QMC) calculations for the model Hamiltonian (5.3) by fitting the experimental data

of the energy gap in LaMnO3 and the resistivity in La0.825Sr0.175MnO3.
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Figure 5.21: Optical conductivity at x = 0, 0.1, 0.175 in the paramagnetic phase and

x = 0.3 in the ferromagnetic phase. The parameters are taken as is in Table 5.1 and

the inverse temperature is β = 30 eV. The inset shows the effective carrier concentration

calculated according to Eq. (3.107).

cal one [Quijada et al. 1998]. This gives rise to an unexpected large experimental

Neff (ω) even below 4 eV and keeps increasing at higher energies, in contrast to the

theoretical predictions presented in the inset of Fig. 5.21.

The discrepancies indicate other mechanisms besides the two-band model of the

Mn eg electrons. We suggest additional contributions to the low energy optical peak

from the O 2p and Mn 3d hybridization. In Ref. [Jung et al. 1998], an intraatomic

Mn3+ →Mn3+ process has been argued to be present in both doped and undoped

manganites due to the hybridization. The high energy optical peak may also be

enhanced by contributions such as La bands and the upper Hubbard band of the

t2g electrons, which are beyond the effective low-energy Hamiltonian. All these new

mechanisms require further investigations.
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In this thesis, we have used DMFT to study the physics of manganites. By com-

bining DMFT with LDA band structure calculations, we have investigated the

pressure-induced insulator-to-metal transition in LaMnO3. The eg orbital split-

ting induced by the Jahn-Teller distortion was found to be strongly enhanced by

the strong on-site Coulomb interaction, giving rise to the insulating ground state

of LaMnO3 at ambient conditions. Under external pressure, the orbital splitting is

suppressed and an insulator-to-metal transition occurs. However, there exists no

intermediate insulating phase without the lattice distortion, in contrast to previous

claims [Loa et al. 2001, Banach & Temmerman 2004, Zenia et al. 2005]. Instead, a

reduced but still finite Jahn-Teller distortion is present at the transition point and

the insulator-to-metal transition is thus not of Mott-Hubbard type. On the other

hand, the band structure calculations also show that the Jahn-Teller distortion alone

is not strong enough to make LaMnO3 an insulator at 0 GPa. Hence our results

demonstrate that both the Coulomb interaction and the electron-phonon interaction

play important roles for the electronic behavior in manganites.

A realistic microscopic model was then proposed for taking into account both the

electron-electron and electron-phonon interactions, together with the Hund’s rule

coupling between the eg conduction electrons and the t2g spins [Yang & Held 2006].

DMFT calculations were performed for both undoped and doped systems. In the un-

doped system, the model produces similar results as the LDA+DMFT calculations

and, most surprisingly, it also predicts the correct structural transition tempera-

ture from dynamic to static Jahn-Teller distortion [Chatterji et al. 2003]. In doped

manganites, the model leads to the lattice polaron picture [Millis et al. 1996a].

The MnO6 octahedra are found to be partially distorted. The eg electrons are

trapped by the large lattice distortion and form lattice polarons. This localiza-

tion of the polarons is found to be supported by the Coulomb interaction. The

undistorted unoccupied states explain the so-called midgap states observed in ex-

periments [Jung et al. 1998]. The spectral density at the Fermi energy is then found

to be determined by the combination of the polaron states and the midgap states,

which, for intermediate electron-phonon coupling, gives rise to the pseudo-gap be-

havior observed in doped manganites. Our results provide for an explanation of

the insulating-like behavior above Tc and the bad metallic behavior below Tc over
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a wide range of doping. The metal-insulator transition at Tc is a result of the mag-

netic transition which changes the spin scattering of the eg conduction electrons. An

external magnetic field shifts the Curie temperature and can hence turn an insulator

into a metal, resulting in the so-called colossal magnetoresistance.

These results show that the realistic microscopic model (2.20) can be applied

to both doped and undoped manganites and can therefore be taken as the start-

ing point towards a complete understanding of the physics of the materials. The

quantitative effect of the Coulomb interaction and the electron-phonon coupling was

then investigated numerically and a new estimate of the parameters was provided by

comparing the results to the optical data [Tokura et al. 1994, Urushibara et al.1995,

Okimoto et al. 1995, Quijada et al. 1998, Jung et al. 1998, Takenaka et al. 1999].

The values of these parameters lie within the experimental estimates [Park et al. 1996,

Kovaleva et al. 2004]. The general behavior of the theoretical optical spectra is

found to be in good agreement with experiments.

Despite these successes, the work also reveals some problems which require further

investigations. These include:

• A better treatment of the ferromagnetic phase which allows for calculations of

the magnetization around Tc. The problem has been studied by other groups

using simplified models, but is impossible for the full Hamiltonian of this

work due to the limitation of the finite temperature QMC to relatively high

temperatures. A different impurity solver is necessary.

• The magnitude of the optical peaks observed in both doped and undoped

manganites. The optical experiments give an unexpected larger sum rule than

the theoretical one (see section 5.3). This suggests other contributions, e.g.,

from the O 2p orbitals, La bands, and the upper Hubbard band of the t2g
electrons, which are beyond our low-energy effective Hamiltonian and can only

be treated in a more complicated model.

• The realistic lattice distortion. For this, we have to include other contributions

such as the cooperative Jahn-Teller effect and the anharmonic phonon poten-

tial (see section 4.3.1). The problem is beyond our single-impurity DMFT

(QMC) method and can only be treated in a more sophisticated method such

as the cluster extensions of DMFT [Kotliar et al. 2001, Potthoff et al. 2003,

Kotliar et al. 2006].

Huge numerical efforts are the main obstacles for further investigations of the above

problems. However, comparisons between experimental data and numerical calcu-

lations will be the only way towards a complete theory of manganites.
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Deutsche Zusammenfassung

Wegen des kolossalen Magnetowiderstandes (CMR) wurden Manganate T1−xDxMnO3

(T: La, Pr, Nd, . . . ; D: Ca, Sr, . . . ) in den letzten Jahren intensiv studiert [Millis 1998,

Salamon & Jaime 2001, Dagotto et al. 2001]. Diese Materialien haben eine Perowskit-

Struktur, wobei jedes Mn-Ion oktaedrisch von sechs Sauerstoff-Ionen umgeben ist.

Von den Orbitalen tragen nur die 3d-Orbitale des Mangans zum thermischen und

elektrischen Transport bei, da alle anderen Orbitale bei höheren Energien d.h. weiter

weg von der Fermi-Energie liegen. Durch den Einfluss des kubischen Kristallfelds

werden die fünf 3d-Orbitale in zwei eg-Orbitale (d3z2−r2 und dx2−y2) und drei t2g-

Orbitale (dxy, dyz, und dzx) aufgespaltet. Nach der Hundschen Regel werden die drei

t2g-Orbitale von drei Elektronen mit parallelem Spin (ein lokalisierter Spin |S| = 3/2)

besetzt, und die restliche 1− x Elektronen besetzen die zwei eg-Orbitale.

Perowskit-Manganate haben ein komplexes Phasendiagramm. Entdeckt wurde zuerst

die Existenz des Ferromagnetismus in Mischkristallen LaMnO3-CaMnO3, LaMnO3-

SrMnO3 und LaMnO3-BaMnO3 [Jonker & Santen 1950, Santen & Jonker 1950]. Sp-

äter wurde auch eine antiferromagnetische Phase in La1−xCaxMnO3 mit Ladungs-

und Orbital-Ordnungen charakterisiert [Wollan & Koehler 1955].

Der CMR-Effekt kann durch das Magnetowiderstandsverhältnis η = δR/R(H) =

(R(0) − R(H))/R(H) oder η′ = δR/R(0) = (R(0)− R(H))/R(0) beschrieben wer-

den. Hierbei ist R(0) der Nullfeld-Widerstand und R(H) der Widerstand im Mag-

netfeld H. Ein großer Magnetowiderstand (η′ = 50%), der 1993 in dünnen Filmen im

externen Magnetfeld beobachtet wurde [Chahara et al. 1993, von Helmolt et al. 1993],

hat in den letzten Jahren großes Interesse geweckt. In einem La0.67Ca0.33MnOx

Film wurde für η ein Wert von 127, 000% gefunden [Jin et al. 1994]. Daher wurde

die Bezeichnung kolossaler Magnetowiderstand eingeführt. Auch in Nd0.7Sr0.3MnOδ

Dünnfilmen wurde von einem Magnetowiderstandsverhältnis bis zu η=106% berichtet

[Xiong et al. 1995].

Bald nachdem der CMR entdeckt wurde, wurden auch verschiedene Phasendia-

gramme in Abhängigkeit von Temperatur und Magnetfeld oder Dotierung erstellt

(s. z.B. [Tokura et al. 1996, Salamon & Jaime 2001, Dagotto et al. 2001]). Außer-

dem wurde der Metall-Isolator-Übergang unter Druck auch für LaMnO3 studiert
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[Loa et al. 2001]. Eine Ladungs- und Orbital-Ordnungs-Phase wurde in vielen Pero-

wskit-Manganaten gefunden, und seine Abhängigkeit von der Bandbreite und der

Unordnung wurde analysiert [Tomioka & Tokura 2004, Mathieu et al. 2006]. In

der paramagnetischen, isolierenden Hochtemperaturphase der dotierten Manganate

zeigen optische Experimente ungewöhnliche dynamische Eigenschaften mit einem

sehr geringen spektralen Gewicht in der Nähe der Fermi-Energie [Bocquet et al. 1992,

Chainani et al. 1993, Saitoh et al. 1997, Park et al. 1996]. Ähnlich ist die optische

Leitfähigkeit σ(ω) sehr niedrig bis zu einer Energie von ca. 1 eV [Okimoto et al. 1995,

Quijada et al. 1998, Jung et al. 1998, Takenaka et al. 1999]. Auf der anderen Seite

ist die ferromagnetische, metallische Tieftemperaturphase ein schlechtes Metall wie

z.B. die optische Leitfähigkeit zeigt [Okimoto et al. 1995].

Das physikalische Verständnis dieser Eigenschaften ist schwierig, wegen der Kom-

plexität aufgrund des Zusammenspiels von Ladungs-, Spin-, Orbital- und Gitterfrei-

heitsgraden, die sich im Phasendiagramm wiederspiegelt.

Der Ferromagnetismus der dotierten Manganate wurde erstmals von Zener mit

dem ”Doppelaustausch-Mechanismus” (DE) erklärt [Zener 1951a, Zener 1951b]. Ein

quantenmechanisches Modell (Kondo-Gitter-Modell) für diesen Mechanismus auf

einem Gitter [Kubo & Ohata 1972] wurde danach hergeleitet. Das Modell beschreibt

die Hundsche Austauschwechselwirkung zwischen t2g-Spins als klassische Vektoren

und den eg-Elektronen. Um die kinetische Energie der itineranten Elektronen zu

optimieren, führt dieses Modell zu einem polarisierten Spinzustand.

Damit erklärt der Doppelaustausch-Mechanismus die höhere elektrische Leitfähigkeit

in der ferromagnetischen Phase, aber es gibt wichtige Unterschiede zu den Ex-

perimenten, wie z.B. der temperaturabhängige Verlauf des Widerstands, der ein

isolierendes Verhalten in der paramagnetischen Phase zeigt. Daher wurde die Wich-

tigkeit der Jahn-Teller-Kopplung zur Beschreibung dotierter Manganate vorgeschla-

gen [Millis et al. 1995] und zusammen mit den Doppelaustausch-Mechanismus stu-

diert [Millis et al. 1996a, Röder et al. 1996]. Obgleich das neue Modell den CMR-

Effekt nicht erklären kann, führt es für eine starke Jahn-Teller-Kopplung zu einer

isolierende Phase mit Gitter-Polaronen.

Um den CMR und die paramagnetische, isolierende Phase zu erklären, wurden

verschiedene Theorien entwicklt, insbesondere die Theorie der orbitale Polaronen

[Kilian & Khaliullin 1998, Horsch et al. 1999], die Anderson-Lokalisation der eg-La-

dungsträger [Varma 1996], die Phasenseparation [Yunoki et al. 1998, Mayr et al. 2001],

und ein phänomenologisches Zweiband-Modell [Ramakrishnan et al. 2004]. Der Ein-

fluss der Coulomb-Wechselwirkung wurde auch im Rahmen des Kondo-Gitter-Modell
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diskutiert [Held & Vollhardt 2000]. Durch die Coulomb-Wechselwirkung wird die

Lokalisation der eg-Elektronen erhöhen.

Trotz all dieser Bemühungen erklärt keine quantitative, mikroskopische Berechnung

bislang zufriedenstellend alle experimentellen Ergebnisse, insbesondere nicht die

paramagnetische, isolierende Phase. Noch steht es zur Debatte, ob die Jahn-Telle-

Verzerrung oder die Coulomb-Wechselwirkung für die isolierenden Eigenschaften von

LaMnO3 verantwortlich ist [Loa et al. 2001].

Die sehr aufwendigen numerischen Berechnungen sind ein weiteres Hindernis zu

einem besseren Verständnis der Manganate. Sowohl die Coulomb-Wechselwirkung

als auch die Jahn-Teller-Kopplung sowie die Hundsche Kopplung zwischen den eg-

Elektronen und den lokalisierten t2g-Spins müssen in Betracht gezogen werden.

Dafür ist die dynamische Molekularfeld-Theorie (DMFT) (mit Quanten-Monte-Carlo-

Simulation zur Lösung des Störstellenproblems) zur Zeit eine der zuverlässigsten

Methode [Georges et al. 1996]. Die lokale Dichteapproximation (LDA) der Dichte-

funktionaltheorie (DFT) kann dabei für eine systematische Untersuchung der elek-

tronischen Strukturen mit der DMFT kombiniert werden (s. z.B. [Held2003]).

In dieser Arbeit studieren wir zuerst den druckinduzierten Isolator-Metall-Übergang

mit der LDA+DMFT Methode, um die Rolle der Coulomb-Wechselwirkung und

der Jahn-Teller-Kopplung in LaMnO3 zu verstehen. Dann wird ein realistischer,

mikroskopischer Hamilton-Operator vorgeschlagen, um die paramagnetische, isolie-

rende Hochtemperaturphase und den Übergang zur ferromagnetischen, metallischen

Tieftemperaturphase in dotierten Manganaten zu erkären.

Die Arbeit gliedert sich dabei wie folgt: In Kapitel 2 rekapitulierten wir zuerst einige

bekannte Modelle mit Doppelaustausch, Jahn-Teller-Kopplung, bzw. Coulomb-

Wechselwirkung. Darauf aufbauend können wir das realistische, mikroskopische

Modell konstruieren, das in unserer Arbeit benutzt wird. Wir diskutieren auch,

wie die Parameter (z.B. die Hüpfmatrixelemente und die Coulomb-Wechselwirkung

sowie die Phononfrequenz) abgeschätzt werden.

In Kapitel 3 stellen wir die DMFT (QMC) Methode vor und zeigen durch Beispiele,

wie diese für fermionische und bosonische Systeme eingeführt werden kann. Wir

präsentieren auch die LDA und LDA+DMFT Methoden. Die Formeln für die

Suszeptibilität und die optische Leitfähigkeit werden abgeleitet.

In Kapitel 4 beschreiben wir im Detail das Hochdruckexperiment und diskutieren

die LDA+DMFT Ergebnisse für den druckinduzierten Isolator-Metall-Übergang in

LaMnO3. Eine DMFT Berechnung für den realistischen, mikroskopischen Hamilton-

130



7

6

5

4

3

1.00.9

01132
W

 (e
V

)

V/V0

P(GPa)

M I Expt.

+LDA

X=0
X=0.94

X=1.85

X=0.52

0.050

7

6

5

4

3

10

Z

Gap (eV)

+U

+DMFT

Figure D.1: Links: LDA eg-Bandbreite, W∼6t, als Funktionen der Kompression, V/V0.

Die obere Abszisse zeigt den experimentellen Druck. Bei 32 GPa liegt der druckinduzierte

Isolator-Metall-Übergang im Experiment [Loa et al. 2001]. Der dimensionslose Parameter

X ist die LDA Kristallfeldaufspaltung in den Maßeinheiten von t. Rechts: LDA+DMFT

(durchgezogene Linien) und LDA+U (gestrichelte Linien) Ergebnisse als Funktionen der

Bandbreite W . Für den Isolator zeigen wir die Energie-Lücke (obere Skala) und für das

Metall das Quasiteilchen-Gewicht (untere Skala). Volle Symbole sind Rechnungen für

die experimentellen Gitter-Strukturen und schwarz-punktierte Linien sind Extrapolatio-

nen. Jede Kurve wurde mit festgelegter Struktur (Bandform) berechnet: orthorhombische

0 GPa (grün, X=1.85), orthorhombische 11 GPa (blau, X=0.94), kubische mit artifizieller

Kristallfeldaufspaltung (dunkelrot, X=0.52) und kubisch (rot,X=0).

operator wird ebenfalls durchgeführt, um die elektronischen Eigenschaften und den

strukturellen Übergang von einer dynamischen zu einer statischen Jahn-Teller-Verzer-

rung in LaMnO3 zu erforschen.

Wir finden, dass die LDA+DMFT Berechnungen ohne die Jahn-Teller-Verzerrung

oder die Coulomb-Wechselwirkung keine metallische Phase unter normalen Bedin-

gungen zeigen (s. Abbildung D.1). Wir stellen folglich fest, dass beide Wechsel-

wirkungen notwendig sind, um Manganate zu beschreiben. Die lokalen eg-Orbitale

werden infolge des Jahn-Teller-Effektes aufgespalten. Die Aufspaltung wird durch

die Coulomb-Wechselwirkung erhöht. Nur die Kombination von beiden führt zu

einem isolierenden Grundzustand in LaMnO3 (s. Abbildung D.2). Durch den

äußeren Druck wird die Gitterverzerrung reduziert und die Bandbreite der eg-Elek-

tronen immer größer. Schließlich ist die Aufspaltung so klein, dass es kein Gap

mehr gibt und der Isolator-Metall-Übergang tritt auf. Aber am Übergang ist die
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Figure D.2: Grafische Darstellung für die isolierende Natur von LaMnO3 aufgrund der

Hundschen Kopplung J , der Coulomb-Abstoßung V ′ und der Jahn-Teller-Verzerrung mit

Kristallfeldaufspaltung ∆.

Gitterverzerrung noch da. Daher ist der druckinduzierte Isolator-Metall-Übergang

nicht vom Mott-Hubbard-Typ.

In Kapitel 5 werden für dotierte Manganate die DMFT Berechnungen für das re-

alistische, mikroskopische Modell durchgeführt. Zuerst analysieren wir im Detail

die verschiedenen optischen Experimente. Dann werden die numerischen Resultate

dargestellt und die grundlegende Physik der Manganate diskutiert. Die spektrale

Dichte der eg-Elektronen in der Nähe der Fermi-Energie ist eine Kombination der

verzerrten, besetzten Zustände und der unverzerrten, unbesetzten Zustände (s. Ab-

bildung D.3). Diese beide Zustände entsprechen den Polaron-Zuständen und den so-

genannten Midgap-Zuständen. Bei mittlerer Jahn-Teller-Kopplung finden wir eine

Pseudolücke in der paramagnetischen Phase. Dies erklärt das anomale Verhalten

der optischen Leitfhigkeit bei niedrigen Energien. Unterhalb der Curie-Temperatur

ist das System aufgrund der ferromagnetischen Ordnung der Mangan-Spins met-

allisch. Aber es ist noch ein ”schlechtes” Metall wegen der starken Orbital- und

Gitterstörung. Bei einigen Dotierungen zeigt das System einen Isolator-Metall-

Übergang am magnetischen Übergang. Wird dieser Übergang durch Erhöhung des

Magnetfeldes induziert, so führt dies zum CMR.

Eine kurze Zusammenfassung unserer Arbeit wird in Kapitel 6 gegeben. Einige Un-

terschiede zu den Experimenten werden auch für weitere Untersuchungen diskutiert.
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Figure D.3: Wahrscheinlichkeitsverteilung der Jahn-Teller-Verzerrungen und der

entsprechenden Spektraldichten der eg-Elektronen für die Jahn-Teller-Kopplung g = 0.10

(linkes) und 0.15 (rechtes) bei β = 16. Die Spektraldichten der eg-Elektronon werden in

zwei Teile mit großer bzw. kleiner Gitterverzerrung getrennt. Zum Vergleich wird die

Wahrscheinlichkeitverteilung ohne die Coulomb-Wechselwirkung auch für g = 0.10 gezeigt

(schwarze gestrichelte Linien). Die Coulomb-Wechselwirkung erhöht den Polaron-Effekt.
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